

Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer

W3C Recommendation 26 June 2007

This version:
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626

Latest version:
http://www.w3.org/TR/wsdl20-primer

Previous version:
http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523

Editors:
David Booth, W3C Fellow / Hewlett-Packard
Canyang Kevin Liu, SAP Labs

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: PDF, PostScript,
XML, and plain text.

See also translations.

Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This document is a companion to the WSDL 2.0 specification (Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language [WSDL 2.0
Core], Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts
[WSDL 2.0 Adjuncts]). It is intended for readers who wish to have an easier, less
technical introduction to the main features of the language.

This primer is only intended to be a starting point toward use of WSDL 2.0, and
hence does not describe every feature of the language. Users are expected to
consult the WSDL 2.0 specification if they wish to make use of more
sophisticated features or techniques.

Finally, this primer is non-normative. Any specific questions of what WSDL 2.0
requires or forbids should be referred to the WSDL 2.0 specification.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

This is the W3C Recommendation of Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer for review by W3C Members and other
interested parties. It has been produced by the Web Services Description
Working Group, which is part of the W3C Web Services Activity.

Please send comments about this document to the public public-ws-desc-
comments@w3.org mailing list (public archive).

The Working Group released a test suite along with an implementation report. A
diff-marked version against the previous version of this document is available.

This document has been reviewed by W3C Members, by software developers,
and by other W3C groups and interested parties, and is endorsed by the Director
as a W3C Recommendation. It is a stable document and may be used as
reference material or cited from another document. W3C's role in making the
Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of
the Web.

This document is governed by the 24 January 2002 CPP as amended by the
W3C Patent Policy Transition Procedure. W3C maintains a public list of any
patent disclosures made in connection with the deliverables of the group; that
page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

Table of Contents

1. Introduction
 1.1 Prerequisites
 1.2 Structure of this Primer
 1.3 Use of URIs and IRIs
 1.4 Notational Conventions
2. WSDL 2.0 Basics
 2.1 Getting Started: The GreatH Hotel Example
 2.1.1 Example Scenario: The GreatH Hotel Reservation Service
 2.1.2 Defining a WSDL 2.0 Target Namespace
 2.1.2.1 Explanation of Example
 2.1.3 Defining Message Types
 2.1.3.1 Explanation of Example
 2.1.4 Defining an Interface

 2.1.4.1 Explanation of Example
 2.1.5 Defining a Binding
 2.1.5.1 Explanation of Example
 2.1.6 Defining a Service
 2.1.6.1 Explanation of Example
 2.1.7 Documenting the Service
 2.1.7.1 Explanation of Example
 2.2 WSDL 2.0 Infoset, Schema and Component Model
 2.2.1 WSDL 2.0 Infoset
 2.2.2 WSDL 2.0 Schema
 2.2.2.1 WSDL 2.0 Element Ordering
 2.2.3 WSDL 2.0 Component Model
 2.2.3.1 WSDL 2.0 Import and Include
 2.3 More on Message Types
 2.3.1 Inlining XML Schema
 2.3.2 Importing XML Schema
 2.3.3 Summary of Import and Include Mechanisms
 2.4 More on Interfaces
 2.4.1 Interface Syntax
 2.4.2 Interface Inheritance
 2.4.3 Interface Faults
 2.4.4 Interface Operations
 2.4.4.1 Operation Attributes
 2.4.4.2 Operation Message References
 2.4.4.2.1 The messageLabel Attribute
 2.4.4.2.2 The element Attribute
 2.4.4.2.3 Multiple infault or outfault Elements
 2.4.4.3 Understanding Message Exchange Patterns (MEPs)
 2.5 More on Bindings
 2.5.1 Syntax Summary for Bindings
 2.5.2 Reusable Bindings
 2.5.3 Binding Faults
 2.5.4 Binding Operations
 2.5.5 The SOAP Binding Extension
 2.5.5.1 Explanation of Example
 2.5.6 The HTTP Binding Extension
 2.5.6.1 Explanation of Example
 2.5.7 HTTP GET Versus POST: Which to Use?
3. Advanced Topics I: Importing Mechanisms
 3.1 Importing WSDL
 3.2 Importing Schemas
 3.2.1 Schemas in Imported Documents
 3.2.2 Multiple Inline Schemas in One Document
 3.2.3 The schemaLocation Attribute
 3.2.3.1 Using the id Attribute to Identify Inline Schemas
4. Advanced Topics II: Extensibility and Predefined Extensions

 4.1 Extensibility
 4.1.1 Optional Versus Required Extensions
 4.2 Defining New MEPs
 4.2.1 Confirmed Challenge
 4.3 RPC Style
5. Advanced Topics III: Miscellaneous
 5.1 Enabling Easy Message Dispatch
 5.2 Web Service Versioning
 5.2.1 Compatible Evolution
 5.2.2 Big Bang
 5.2.3 Evolving a Service
 5.2.4 Combined Approaches
 5.2.5 Examples of Versioning and Extending a Service
 5.2.5.1 Additional Optional Elements Added in Content
 5.2.5.2 Additional Optional Elements Added to a Header
 5.2.5.3 Additional Mandatory Elements in Content
 5.2.5.4 Additional Optional Operation Added to Interface
 5.2.5.5 Additional Mandatory Operation Added to Interface
 5.2.5.6 Indicating Incompatibility by Changing the Endpoint URI
 5.2.5.7 Indicating Incompatibility by Changing the SOAP Action
 5.2.5.8 Indicating Incompatibility by Changing the Element Content
 5.3 Describing Web Service Messages That Refer to Other Web Services
 5.3.1 The Reservation Details Web Service
 5.3.2 The Reservation List Web Service
 5.3.3 Reservation Details Web Service Using HTTP Transfer
 5.3.4 Reservation List Web Service Using HTTP GET
 5.4 Multiple Interfaces for the Same Service
 5.5 Mapping to RDF and Semantic Web
 5.5.1 RDF Representation of WSDL 2.0
 5.6 Notes on URIs
 5.6.1 XML Namespaces and Schema Locations
 5.6.2 Relative URIs
 5.6.3 Generating Temporary URIs
6. References
 6.1 Normative References
 6.2 Informative References

Appendix

A. Acknowledgements (Non-Normative)

1. Introduction

1.1 Prerequisites

This primer assumes that the reader has the following prerequisite knowledge:

 familiarity with XML (Extensible Markup Language (XML) 1.0 [XML 1.0],
XML Information Set [XML Information Set]) and XML Namespaces
(Namespaces in XML [XML Namespaces]);

 some familiarity with XML Schema (XML Schema Part 1: Structures [XML
Schema Structures] XML Schema Part 2: Datatypes [XML Schema
Datatypes]);

 familiarity with basic Web services concepts such as Web service, client,
and the purpose and function of a Web service description. (For an
explanation of basic Web services concepts, see Web Services
Architecture [WS Architecture] Section 1.4 and Web Services Glossary
[WS Glossary] glossary. However, note the Web Services Architecture
document uses the slightly more precise terms "requester agent" and
"provider agent" instead of the terms "client" and "Web service" used in
this primer.)

No previous experience with WSDL is assumed.

1.2 Structure of this Primer

Section 2 starts with a hypothetical use case involving a hotel reservation
service. It proceeds step-by-step through the development of a simple example
WSDL 2.0 document that describes this service:

 The types element describes the kinds of messages that the service will
send and receive.

 The interface element describes what abstract functionality the Web
service provides.

 The binding element describes how to access the service.

 The service element describes where to access the service.

After presenting the example, it moves on to introduce the WSDL 2.0 infoset,
schema, and component model. Then it provides more detailed coverage on
defining message types, interfaces, bindings, and services.

Section 3 explains the WSDL 2.0 importing mechanisms in great details.

Section 4 talks about WSDL 2.0 extensibility and various predefined extensions.

Section 5 covers various topics that may fall outside the scope of WSDL 2.0, but
shall provide useful background and best practice guidances that may be useful
when authoring a WSDL 2.0 document or implementing the WSDL 2.0
specification.

1.3 Use of URIs and IRIs

The core specification of WSDL 2.0 supports Internationalized Resource
Identifiers or IRIs [IETF RFC 3987]. IRIs are a superset of URIs with added
support for internationalization. The URI syntax [IETF RFC 3986] only allows the

use of a small set of characters, including upper and lower case letters of the
English alphabet, European numerals and a few symbols. IRIs allow the use of
characters from a wider range of language scripts.

For simplicity, examples throughout this primer only use URIs. If you are
interested in learning more about the use of IRIs, you might care to read the
paper prepared by the W3C Internationalization Activity.

1.4 Notational Conventions

This document uses several XML namespaces, some of which are defined by
standards, and some are application-specific. Namespace names of the general
form "http://greath.example.com/..." represent application or context-dependent
URIs [IETF RFC 3986].Note also that the choice of any namespace prefix is
arbitrary and not semantically significant (see [XML Information Set]).

Following the convention for XML syntax summary in [WSDL 2.0 Core], this
primer uses an informal syntax to describe the XML grammar of a WSDL 2.0
document:

 The syntax appears as an XML instance, but the values indicate the data
types instead of values.

 Characters are appended to elements and attributes as follows: "?" (0 or
1), "*" (0 or more), "+" (1 or more).

 Elements names ending in "…" indicate that elements/attributes irrelevant
to the context are being omitted.

2. WSDL 2.0 Basics

2.1 Getting Started: The GreatH Hotel Example

This section introduces the basic concepts used in WSDL 2.0 through the
description of a hypothetical hotel reservation service. We start with a simple
scenario, and later add more requirements to illustrate how more advanced
WSDL 2.0 features may be used.

2.1.1 Example Scenario: The GreatH Hotel Reservation Service

Hotel GreatH (a fictional hotel) is located in a remote island. It has been relying
on fax and phone to provide room reservations. Even though the facilities and
prices at GreatH are better than what its competitor offers, GreatH notices that its
competitor is getting more customers than GreatH. After research, GreatH
realizes that this is because the competitor offers a Web service that permits
travel agent reservation systems to reserve rooms directly over the Internet.
GreatH then hires us to build a reservation Web service with the following
functionality:

 CheckAvailability. To check availability, the client must specify a check-in
date, a check-out date, and room type. The Web service will return a room
rate (a floating point number in USD) if such a room is available, or a zero
room rate if not. If any input data is invalid, the service should return an
error. Thus, the service will accept a checkAvailability message and
return a checkAvailabilityResponse or invalidDataFault message.

 MakeReservation. To make a reservation, a client must provide a name,
address, and credit card information, and the service will return a
confirmation number if the reservation is successful. The service will
return an error message if the credit card number or any other data field is
invalid. Thus, the service will accept a makeReservation message and
return a makeReservationResponse or invalidCreditCardFault message.

We know that we will later need to build a complete system that supports
transactions and secured transmission, but initially we will implement only
minimal functionality. In fact, to simplify our first example, we will implement only
the CheckAvailability operation.

The next several sections proceed step-by-step through the process of
developing a WSDL 2.0 document that describes the desired Web service.
However, for those who can't wait to see a complete example, here is the WSDL
2.0 document that we'll be creating.

Example 2-1. WSDL 2.0 Document for the GreatH Web Service (Initial Example)
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
 xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsdlx= "http://www.w3.org/ns/wsdl-extensions">

 <documentation>
 This document describes the GreatH Web service. Additional
 application-level requirements for use of this service --
 beyond what WSDL 2.0 is able to describe -- are available
 at http://greath.example.com/2004/reservation-documentation.html
 </documentation>

 <types>
 <xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/resSvc"
 xmlns="http://greath.example.com/2004/schemas/resSvc">

 <xs:element name="checkAvailability"
type="tCheckAvailability"/>
 <xs:complexType name="tCheckAvailability">
 <xs:sequence>
 <xs:element name="checkInDate" type="xs:date"/>

 <xs:element name="checkOutDate" type="xs:date"/>
 <xs:element name="roomType" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="checkAvailabilityResponse" type="xs:double"/>

 <xs:element name="invalidDataError" type="xs:string"/>

 </xs:schema>
 </types>

 <interface name = "reservationInterface" >

 <fault name = "invalidDataFault"
 element = "ghns:invalidDataError"/>

 <operation name="opCheckAvailability"
 pattern="http://www.w3.org/ns/wsdl/in-out"
 style="http://www.w3.org/ns/wsdl/style/iri"
 wsdlx:safe = "true">
 <input messageLabel="In"
 element="ghns:checkAvailability" />
 <output messageLabel="Out"
 element="ghns:checkAvailabilityResponse" />
 <outfault ref="tns:invalidDataFault" messageLabel="Out"/>
 </operation>

 </interface>

 <binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <fault ref="tns:invalidDataFault"
 wsoap:code="soap:Sender"/>

 <operation ref="tns:opCheckAvailability"
 wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

 </binding>

 <service name="reservationService"
 interface="tns:reservationInterface">

 <endpoint name="reservationEndpoint"
 binding="tns:reservationSOAPBinding"
 address
="http://greath.example.com/2004/reservation"/>

 </service>

</description>

2.1.2 Defining a WSDL 2.0 Target Namespace

Before writing our WSDL 2.0 document, we need to decide on a WSDL 2.0 target
namespace URI for it. The WSDL 2.0 target namespace is analogous to an XML
Schema target namespace. Interface, binding and service names that we define
in our WSDL 2.0 document will be associated with the WSDL 2.0 target
namespace, and thus will be distinguishable from similar names in a different
WSDL 2.0 target namespace. (This will become important if using WSDL 2.0's
import or interface inheritance mechanisms.)

The value of the WSDL 2.0 target namespace must be an absolute URI.
Furthermore, it should be dereferenceable to a WSDL 2.0 document that
describes the Web service that the WSDL 2.0 target namespace is used to
describe. For example, the GreatH owners should make the WSDL 2.0 document
available from this URI. (And if a WSDL 2.0 description is split into multiple
documents, then the WSDL 2.0 target namespace should resolve to a master
document that includes all the WSDL 2.0 documents needed for that service
description.) However, there is no absolute requirement for this URI to be
dereferenceable, so a WSDL 2.0 processor must not depend on it being
dereferenceable.

This recommendation may sound circular, but bear in mind that the client might
have obtained the WSDL 2.0 document from anywhere -- not necessarily an
authoritative source. But by dereferencing the WSDL 2.0 target namespace URI,
a user should be able to obtain an authoritative version. Since GreatH will be the
owner of the service, the WSDL 2.0 target namespace URI should refer to a
location on the GreatH Web site or otherwise within its control.

Once we have decided on a WSDL 2.0 target namespace URI, we can begin our
WSDL 2.0 document as the following empty shell.

Example 2-2. An Initial Empty WSDL 2.0 Document
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 . . . >

 . . .
</description>

2.1.2.1 Explanation of Example

<description

Every WSDL 2.0 document has a description element as its top-most
element. This merely acts as a container for the rest of the WSDL 2.0
document, and is used to declare namespaces that will be used
throughout the document.

xmlns="http://www.w3.org/ns/wsdl"

This is the XML namespace for WSDL 2.0 itself. We assign it as the
default namespace for this example by not defining a prefix for it. In other
words, any unprefixed elements in this example are expected to be WSDL
2.0 elements (such as the description element).

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

This defines the WSDL 2.0 target namespace that we have chosen for the
GreatH reservation service, as described above. Note that this is not an
actual XML namespace declaration. Rather, it is a WSDL 2.0 attribute
whose purpose is analogous to an XML Schema target namespace.

xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"

This is an actual XML namespace declaration for use in our GreatH
service description. Note that this is the same URI that was specified
above as the value of the targetNamespace attribute. This will allow us
later to use the tns: prefix in QNames, to refer to the WSDL 2.0 target
namespace of the GreatH service. (For more on QNames see [XML
Namespaces] section 3 Qualified Names.)

Now we can start describing the GreatH service.

2.1.3 Defining Message Types

We know that the GreatH service will be sending and receiving messages, so a
good starting point in describing the service is to define the message types that
the service will use. We'll use XML Schema to do so, because WSDL 2.0
processors are likely to support XML Schema at a minimum. However, WSDL
2.0 does not prohibit the use of some other schema definition language.

WSDL 2.0 allows message types to be defined directly within the WSDL 2.0
document, inside the types element, which is a child of the description element.
(Later we'll see how we can provide the type definitions in a separate document,
using XML Schema's import mechanism.) The following schema defines
checkAvailability, checkAvailabilityResponse and invalidDataError
message types that we'll need.

In WSDL 2.0, all normal and fault message types must be defined as single
elements at the topmost level (though of course each element may have any
amount of substructure inside it). Thus, a message type must not directly consist
of a sequence of elements or other complex type.

Example 2-3. GreatH Message Types
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
 . . . >

 ...

 <types>
 <xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/resSvc"
 xmlns="http://greath.example.com/2004/schemas/resSvc">

 <xs:element name="checkAvailability"
type="tCheckAvailability"/>
 <xs:complexType name="tCheckAvailability">
 <xs:sequence>
 <xs:element name="checkInDate" type="xs:date"/>
 <xs:element name="checkOutDate" type="xs:date"/>
 <xs:element name="roomType" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="checkAvailabilityResponse" type="xs:double"/>

 <xs:element name="invalidDataError" type="xs:string"/>

 </xs:schema>
 </types>
 . . .
</description>

2.1.3.1 Explanation of Example

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"

We've added another namespace declaration. The ghns namespace prefix
will allow us (later, when defining an interface) to reference the XML
Schema target namespace that we define for our message types. Thus,
the URI we specify must be the same as the URI that we define as the
target namespace of our XML Schema types (below) -- not the target
namespace of the WSDL 2.0 document itself.

targetNamespace="http://greath.example.com/2004/schemas/resSvc"

This is the XML Schema target namespace that we've created for use by
the GreatH reservation service. The checkAvailability,
checkAvailabilityResponse and invalidDataError element names will be
associated with this XML Schema target namespace.

checkAvailability, checkAvailabilityResponse and invalidDataError

These are the message types that we'll use. Note that these are defined to
be XML elements, as explained above.

Although we have defined several types, we have not yet indicated which ones
are to be used as message types for a Web service. We'll do that in the next
section.

2.1.4 Defining an Interface

WSDL 2.0 enables one to separate the description of a Web service's abstract
functionality from the concrete details of how and where that functionality is
offered. This separation facilitates different levels of reusability and distribution of
work in the lifecycle of a Web service and the WSDL 2.0 document that
describes it.

A WSDL 2.0 interface defines the abstract interface of a Web service as a set
of abstract operations, each operation representing a simple interaction between
the client and the service. Each operation specifies the types of messages that
the service can send or receive as part of that operation. Each operation also
specifies a message exchange pattern that indicates the sequence in which the
associated messages are to be transmitted between the parties. For example,
the in-out pattern (see WSDL 2.0 Predefined Extensions [WSDL 2.0 Adjuncts]
section 2.2.3 In-Out) indicates that if the client sends a message in to the service,
the service will either send a reply message back out to the client (in the normal
case) or it will send a fault message back to the client (in the case of an error).
We will explain more about message exchange patterns in 2.4.4.3
Understanding Message Exchange Patterns (MEPs)

For the GreatH service, we will (initially) define an interface containing a single
operation, opCheckAvailability, using the checkAvailability and
checkAvailabilityResponse message types that we defined in the types section.
We'll use the in-out pattern for this operation, because this is the most natural
way to represent a simple request-response interaction. We could have instead
(for example) defined two separate operations using the in-only and out-only
patterns (see WSDL 2.0 Predefined Extensions [WSDL 2.0 Adjuncts] section
2.2.1 In-Only and section 2.2.5 Out-Only), but that would just complicate matters
for the client, because we would then have to separately indicate to the client
developer that the two operations should be used together as a request-
response pair.

In addition to the normal input and output messages, we also need to specify the
fault message that we wish to use in the event of an error. WSDL 2.0 permits
fault messages to be declared within the interface element in order to facilitate
reuse of faults across operations. If a fault occurs, it terminates whatever
message sequence was indicated by the message exchange pattern of the
operation.

Let's add these to our WSDL 2.0 document.

Example 2-4. GreatH Interface Definition
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
 . . .
 xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions">

 . . .
 <types>

 ...
 </types>

 <interface name = "reservationInterface" >

 <fault name = "invalidDataFault"
 element = "ghns:invalidDataError"/>

 <operation name="opCheckAvailability"
 pattern="http://www.w3.org/ns/wsdl/in-out"
 style="http://www.w3.org/ns/wsdl/style/iri"
 wsdlx:safe = "true">
 <input messageLabel="In"
 element="ghns:checkAvailability" />
 <output messageLabel="Out"
 element="ghns:checkAvailabilityResponse" />
 <outfault ref="tns:invalidDataFault" messageLabel="Out"/>
 </operation>

 </interface>

 . . .
</description>

2.1.4.1 Explanation of Example

<interface name = "reservationInterface" >

Interfaces are declared directly inside the description element. In this
example, we are declaring only one interface, but in general a WSDL 2.0
document may declare more than one interface. Thus, each interface
must be given a name that is unique within the set of interfaces defined in
this WSDL 2.0 target namespace. Interface names are tokens that must
not contain a space or colon (":").

<fault name = "invalidDataFault"

The name attribute defines a name for this fault. The name is required so
that when an operation is defined, it can reference the desired fault by
name. Fault names must be unique within an interface.

element = "ghns:invalidDataError"/>

The element attribute specifies the schema type of the fault message, as
previously defined in the types section.

<operation name="opCheckAvailability"

The name attribute defines a name for this operation, so that it can be
referenced later when bindings are defined. Operation names must also
be unique within an interface. (WSDL 2.0 uses separate symbol spaces
for operation and fault names, so operation name "foo" is distinct from
fault name "foo".)

pattern="http://www.w3.org/ns/wsdl/in-out"

This line specifies that this operation will use the in-out pattern as
described above. WSDL 2.0 uses URIs to identify message exchange

patterns in order to ensure that the identifiers are globally unambiguous,
while also permitting future new patterns to be defined by anyone.
(However, just because someone defines a new pattern and creates a
URI to identify it, that does not mean that other WSDL 2.0 processors will
automatically recognize or understand that pattern. As with any other
extension, it can only be used among processors that do recognize and
understand it.)

style="http://www.w3.org/ns/wsdl/style/iri"

This line indicates that the XML schema defining the input message of this
operation follows a set of rules as specified in IRI Style that ensures the
message can be serialized as an IRI.

wsdlx:safe="true" >

This line indicates that this operation will not obligate the client in any way,
i.e., the client can safely invoke this operation without fear that it may be
incurring an obligation (such as agreeing to buy something). This is further
explained in 2.4.4 Interface Operations.

<input messageLabel="In"

The input element specifies an input message. Even though we have
already specified which message exchange pattern the operation will use,
a message exchange pattern represents a template for a message
sequence, and in theory could consist of multiple input and/or output
messages. Thus we must also indicate which potential input message in
the pattern this particular input message represents. This is the purpose of
the messageLabel attribute. Since the in-out pattern that we've chosen to
use only has one input message, it is trivial in this case: we simply fill in
the message label "In" that was defined in WSDL 2.0 Predefined
Extensions [WSDL 2.0 Adjuncts] section 2.2.3 In-Out for the in-out pattern.
However, if a new pattern is defined that involve multiple input messages,
then the different input messages in the pattern could then be
distinguished by using different labels.

element="ghns:checkAvailability" />

This specifies the message type for this input message, as defined
previously in the types section.

<output messageLabel="Out" . . .

This is similar to defining an input message.
<outfault ref="tns:invalidDataFault" messageLabel="Out"/>

This associates an output fault with this operation. Faults are declared a
little differently than normal messages. The ref attribute refers to the
name of a previously defined fault in this interface -- not a message
schema type directly. Since message exchange patterns could in general
involve a sequence of several messages, a fault could potentially occur at
various points within the message sequence. Because one may wish to
associate a different fault with each permitted point in the sequence, the
messageLabel is used to indicate the desired point for this particular fault. It

does so indirectly by specifying the message that will either trigger this
fault or that this fault will replace, depending on the pattern. (Some
patterns use a message-triggers-fault rule; others use a fault-replaces-
message rule. See WSDL 2.0 Predefined Extensions [WSDL 2.0 Adjuncts]
section 2.1.2 Message Triggers Fault and section 2.1.1 Fault Replaces
Message.)

Now that we've defined the abstract interface for the GreatH service, we're ready
to define a binding for it.

2.1.5 Defining a Binding

Although we have specified what abstract messages can be exchanged with the
GreatH Web service, we have not yet specified how those messages can be
exchanged. This is the purpose of a binding. A binding specifies concrete
message format and transmission protocol details for an interface, and must
supply such details for every operation and fault in the interface.

In the general case, binding details for each operation and fault are specified
using operation and fault elements inside a binding element, as shown in the
example below. However, in some cases it is possible to use defaulting rules to
supply the information. The WSDL 2.0 SOAP binding extension, for example,
defines some defaulting rules for operations. (See Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts [WSDL 2.0 Adjuncts], Default
Binding Rules.)

In order to accommodate new kinds of message formats and transmission
protocols, bindings are defined using extensions to the WSDL 2.0 language, via
WSDL 2.0's open content model. (See 4.1 Extensibility for more on
extensibility.) WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts] defines binding extensions
for SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework] and HTTP 1.1 [IETF
RFC 2616] as predefined extensions, so that SOAP 1.2 or HTTP 1.1 bindings
can be easily defined in WSDL 2.0 documents. However, other specifications
could define new binding extensions that could also be used to define bindings.
(As with any extension, other WSDL 2.0 processors would have to know about
the new constructs in order to make use of them.)

For the GreatH service, we will use SOAP 1.2 as our concrete message format
and HTTP as our underlying transmission protocol, as shown below.

Example 2-5. GreatH Binding Definition
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
 xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 . . .

 <types>

 . . .
 </types>

 <interface name = "reservationInterface" >
 ...
 </interface>

 <binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="tns:opCheckAvailability"
 wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

 <fault ref="tns:invalidDataFault"
 wsoap:code="soap:Sender"/>

 </binding>

 . . .
</description>

2.1.5.1 Explanation of Example

xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"

We've added two more namespace declarations. This one is the
namespace for the SOAP 1.2 binding extension that is defined in WSDL
2.0 Part 3 [SOAP 1.2 Part 1: Messaging Framework]. Elements and
attributes prefixed with wsoap: are constructs defined there.

xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

This namespace is defined by the SOAP 1.2 specification itself. The
SOAP 1.2 specification defines certain terms within this namespace to
unambiguously identify particular concepts. Thus, we will use the soap:
prefix when we need to refer to one of those terms.

<binding name="reservationSOAPBinding"

Bindings are declared directly inside the description element. The name
attribute defines a name for this binding. Each name must be unique
among all bindings in this WSDL 2.0 target namespace, and will be used
later when we define a service endpoint that references this binding.
WSDL 2.0 uses separate symbol spaces for interfaces, bindings and
services, so interface "foo", binding "foo" and service "foo" are all distinct.

interface="tns:reservationInterface"

This is the name of the interface whose message format and transmission
protocols we are specifying. As discussed in 2.5 More on Bindings, a
reusable binding can be defined by omitting the interface attribute. Note
also the use of the tns: prefix, which refers to the previously defined
WSDL 2.0 target namespace for this WSDL 2.0 document. In this case it

may seem silly to have to specify the tns: prefix, but in 3.1 Importing
WSDL we will see how WSDL 2.0's import mechanism can be used to
combine components that are defined in different WSDL 2.0 target
namespaces.

type="http://www.w3.org/ns/wsdl/soap"

This specifies what kind of concrete message format to use, in this case
SOAP 1.2.

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/"

This attribute is specific to WSDL 2.0's SOAP binding extension (thus it
uses the wsoap: prefix). It specifies the underlying transmission protocol
that should be used, in this case HTTP.

<operation ref="tns:opCheckAvailability"

This is not defining a new operation; rather, it is referencing the previously
defined opCheckAvailability operation in order to specify binding details
for it. This element can be omitted if defaulting rules are instead used to
supply the necessary information. (See the SOAP binding extension in
WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts] section 4.3 Default Binding Rules .)

wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response">

This attribute is also specific to WSDL 2.0's SOAP binding extension. It
specifies the SOAP message exchange pattern (MEP) that will be used to
implement the abstract WSDL 2.0 message exchange pattern (in-out) that
was specified when the opCheckAvailability operation was defined.

When HTTP is used as the underlying transport protocol (as in this
example) the wsoap:mep attribute also controls whether GET or POST will
be used as the underlying HTTP method. In this case, the use of
wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"
causes GET to be used by default. See also 2.5.7 HTTP GET Versus
POST: Which to Use?.

<fault ref="tns:invalidDataFault"

As with a binding operation, this is not declaring a new fault; rather, it is
referencing a fault (invalidDataFault) that was previously defined in the
opCheckAvailability interface, in order to specify binding details for it.

wsoap:code="soap:Sender"/>

This attribute is also specific to WSDL 2.0's SOAP binding extension. This
specifies the SOAP 1.2 fault code that will cause this fault message to be
sent. If desired, a list of subcodes can also be specified using the optional
wsoap:subcodes attribute.

2.1.6 Defining a Service

Now that our binding has specified how messages will be transmitted, we are
ready to specify where the service can be accessed, by use of the service
element.

A WSDL 2.0 service specifies a single interface that the service will support, and
a list of endpoint locations where that service can be accessed. Each endpoint
must also reference a previously defined binding to indicate what protocols and
transmission formats are to be used at that endpoint. A service is only permitted
to have one interface. (See 5.4 Multiple Interfaces for the Same Service for
further discussion of this limitation.)

Here is a definition for our GreatH service.

Example 2-6. GreatH Service Definition
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
 xmlns:wsoap= "http://www.w3.org/ns/wsdl/soap"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 . . .

 <types>
 . . .
 </types>

 <interface name = "reservationInterface" >
 . . .
 </interface>

 <binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 . . . >
 . . .
 </binding>

 <service name="reservationService"
 interface="tns:reservationInterface">

 <endpoint name="reservationEndpoint"
 binding="tns:reservationSOAPBinding"
 address
="http://greath.example.com/2004/reservation"/>

 </service>

</description>

2.1.6.1 Explanation of Example

<service name="reservationService"

This defines a name for this service, which must be unique among service
names in the WSDL 2.0 target namespace. The name attribute is
required. It allows URIs to be created that identify components in WSDL
2.0 description. (See WSDL 2.0 Core Language [WSDL 2.0 Core]
appendix C IRI References for WSDL 2.0 constructs.)

interface="tns:reservationInterface">

This specifies the name of the previously defined interface that these
service endpoints will support.

<endpoint name="reservationEndpoint"

This defines an endpoint for the service, and a name for this endpoint,
which must be unique within this service.

binding="tns:reservationSOAPBinding"

This specifies the name of the previously defined binding to be used by
this endpoint.

address ="http://greath.example.com/2004/reservation"/>

This specifies the physical address at which this service can be accessed
using the binding specified by the binding attribute.

That's it! Well, almost.

2.1.7 Documenting the Service

As we have seen, a WSDL 2.0 document is inherently only a partial description
of a service. Although it captures the basic mechanics of interacting with the
service -- the message types, transmission protocols, service location, etc. -- in
general, additional documentation will need to explain other application-level
requirements for its use. For example, such documentation should explain the
purpose and use of the service, the meanings of all messages, constraints on
their use, and the sequence in which operations should be invoked.

The documentation element allows the WSDL 2.0 author to include some human-
readable documentation inside a WSDL 2.0 document. It is also a convenient
place to reference any additional external documentation that a client developer
may need in order to use the service. It can appear in a number of places in a
WSDL 2.0 document (see 2.2.1 WSDL 2.0 Infoset), though in this example we
have only demonstrated its use at the beginning.

Example 2-7. Documenting the GreatH Service
<?xml version="1.0" encoding="utf-8" ?>
<description
 . . . >

 <documentation>
 This document describes the GreatH Web service. Additional
 application-level requirements for use of this service --
 beyond what WSDL 2.0 is able to describe -- are available
 at http://greath.example.com/2004/reservation-documentation.html
 </documentation>
 . . .
</description>

2.1.7.1 Explanation of Example

<documentation>

This element is optional, but a good idea to include. It can contain arbitrary
mixed content.

at http://greath.example.com/2004/reservation-documentation.html

The most important thing to include is a pointer to any additional
documentation that a client developer would need in order to use the
service.

This completes our presentation of the GreatH example. In the following
sections, we will move on to look into more details of various aspects of WSDL
2.0 specification.

2.2 WSDL 2.0 Infoset, Schema and Component Model

In computer science theory, a language consists of a (possibly infinite) set of
sentences, and each sentence is a finite string of literal symbols or characters. A
language specification must therefore define the set of sentences in that
language, and, to be useful, it should also indicate the meaning of each
sentence. Indeed, this is the purpose of the WSDL 2.0 specification.

However, instead of defining WSDL 2.0 in terms of literal symbols or characters,
to avoid dependency on any particular character encoding, WSDL 2.0 is defined
in terms of the XML Infoset [XML Information Set]. Specifically, a WSDL 2.0
document consists of a description element information item (in the XML
Infoset) that conforms to the WSDL 2.0 specification. In other words, a sentence
in the WSDL 2.0 language is a description element information item that obeys
the additional constraints spelled out in the WSDL 2.0 specification.

Since an XML Infoset can be created from more than one physical document, a
WSDL 2.0 document does not necessarily correspond to a single physical
document: the word "document" is used figuratively, for convenience.
Furthermore, since WSDL 2.0 provides import and include mechanisms, a
WSDL 2.0 document may reference other WSDL 2.0 documents to facilitate
convenient organization or reuse. In such cases, the meaning of the including or
importing document as a whole will depend (in part) on the meaning of the
included or imported document.

The XML Infoset uses terms like "element information item" and "attribute
information item". Unfortunately, those terms are rather lengthy to repeat often.
Thus, for convenience, this primer often uses the terms "element" and "attribute"
instead, as a shorthand. It should be understood, however, that since WSDL 2.0
is based on the XML Infoset, we really mean "element information item" and
"attribute information item", respectively.

2.2.1 WSDL 2.0 Infoset

The following diagram gives an overview of the XML Infoset for a WSDL 2.0
document.

Figure 2-1. WSDL 2.0 Infoset Diagram

2.2.2 WSDL 2.0 Schema

The WSDL 2.0 specification supplies a normative WSDL 2.0 schema, defined in
[XML Schema Structures], which can be used as an aid in validating WSDL 2.0
documents. We say "as an aid" here because WSDL 2.0 specification [WSDL 2.0
Core] often provides further constraints to the WSDL 2.0 schema. In addition to
being valid with the normative schema, a WSDL 2.0 document must also follow
all the constraints defined by the WSDL 2.0 specification.

2.2.2.1 WSDL 2.0 Element Ordering

This section gives an example of how WSDL 2.0 specification constrains the
WSDL 2.0 schema about the ordering of top WSDL 2.0 elements.

Although the WSDL 2.0 schema does not indicate the required ordering of
elements, the WSDL 2.0 specification (WSDL 2.0 Part 1 [WSDL 2.0 Core]

section "XML Representation of Description Component") clearly states a set of
constraints about how the child elements of the description element should be
ordered. Thus, the order of the WSDL 2.0 elements matters, even though the
WSDL 2.0 schema does not capture this constraint.

The following is a pseudo-content model of description.
<description>
 <documentation />?
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</description>

In other words, the children elements of the description element should be
ordered as follows:

 An optional documentation comes first, if present.

 then comes zero or more elements from among the following, in any
order:

o include
o import

o extensions

 An optional types follows

 Zero or more elements from among the following, in any order:
o interface
o binding
o service

o extensions.

Note the term "extension" is used above as a convenient way to refer to
namespace-qualified extension elements. The namespace name of such
extension elements must not be"http://www.w3.org/ns/wsdl".

2.2.3 WSDL 2.0 Component Model

The WSDL 2.0 Infoset model above illustrates the required structure of a WSDL
2.0 document, using the XML Infoset. However, the WSDL 2.0 language also
imposes many semantic constraints over and above structural conformance to
this XML Infoset. In order to precisely describe these constraints, and as an aid
in precisely defining the meaning of each WSDL 2.0 document, the WSDL 2.0
specification defines a component model as an additional layer of abstraction
above the XML Infoset. Constraints and meaning are defined in terms of this
component model, and the definition of each component includes a mapping that
specifies how values in the component model are derived from corresponding
items in the XML Infoset. The following diagram gives an overview of the WSDL
2.0 components and their containment hierarchy.

Figure 2-2. WSDL 2.0 Components Containment hierarchy

In general, the WSDL 2.0 component model parallels the structure of the
required XML Infoset illustrated above. For example, the Description, Interface,
Binding, Service and Endpoint components correspond to the description,
interface, binding, service, and endpoint element information items,
respectively. Since WSDL 2.0 relies heavily on the component model to convey
the meaning of the constructs in the WSDL 2.0 language, you can think of the
Description component as representing the meaning of the description element
information item, and hence, it represents the meaning of the WSDL 2.0
document as a whole.

Furthermore, each of these components has properties whose values are
(usually) derived from the element and attribute information item children of those
element information items. For example, the Service component corresponds to
the service element information item, so the Service component has an
{endpoints} property whose value is a set of Endpoint components corresponding

to the endpoint element information item children of that service element
information item. (Whew!)

2.2.3.1 WSDL 2.0 Import and Include

The WSDL 2.0 component model is particularly helpful in defining the meaning of
import and include elements. The include element allows you to assemble the
contents of a given WSDL 2.0 namespace from several WSDL 2.0 documents
that define components for that namespace. The components defined by a given
WSDL 2.0 document consist of those whose definitions are contained in the
document and those that are defined by any WSDL 2.0 documents that are
included in it via the include element. The effect of the include element is
cumulative so that if document A includes document B and document B includes
document C, then the components defined by document A consist of those
whose definitions are contained in documents A, B, and C.

In contrast, the import element does not define any components. Instead, the
import element declares that the components whose definitions are contained in
a WSDL 2.0 document for a given WSDL 2.0 namespace refer to components
that belong to a different WSDL 2.0 namespace. If a WSDL 2.0 document
contains definitions of components that refer to other namespaces, then those
namespaces must be declared via an import element. The import element also
has an optional location attribute that is a hint to the processor where the
definitions of the imported namespace can be found. However, the processor
may find the definitions by other means, for example, by using a catalog.

After processing any include elements and locating the components that belong
to any imported namespaces, the WSDL 2.0 component model for a WSDL 2.0
document will contain a set of components that belong to the document's WSDL
2.0 namespace and any imported namespaces. These components will refer to
each other, usually via QName references. A WSDL 2.0 document is invalid if
any component reference cannot be resolved, whether or not the referenced
component belongs to the same or a different namespace.

We will cover a lot more about how to use WSDL 2.0 import and include in 3.1
Importing WSDL

2.3 More on Message Types

Message types may be defined in various schema languages. In this primer, we
will only focus on the use of XML Schema [XML Schema Structures] since it's
natively supported by WSDL 2.0. Message types defined in other languages may
be introduced into a WSDL 2.0 description via extensions, see the W3C notes
[Alternative Schema Languages Support] for more details.

The following is the XML syntax for the wsdl:types element:
<description>
 <types>
 <documentation />*

 [<xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? />
|
 <xs:schema targetNamespace="xs:anyURI" /> |
 other extension elements]*
 </types>
</description>

There are two ways to make XML Schema message definitions visible, or in
other words, available for reference by QName (see WSDL 2.0 Part 1 [WSDL 2.0
Core] "QName Resolution") in a WSDL 2.0 document: inlining or importing.
Inlining is to put the schema definitions directly within an xs:schema element
under types. Importing is to have the schema defined in a separate document
and then bring it into the WSDL definition by using xs:import directly under
types.

In the following sections, we will provide examples for the different mechanisms.

2.3.1 Inlining XML Schema

We have already seen an example of using inlined schema definitions in section
2.1.3 Defining Message Types. When XML Schema is inlined directly in a
WSDL 2.0 document, it uses the existing top-level xs:schema element defined by
XML Schema to do so, as though a schema file had been copied and pasted into
the types element. The schema components defined in the inlined schema are
then available to the containing WSDL 2.0 description for reference by QName.
For instance, in Example 2-1, the input message of the interface operation
"opCheckAvailability" is defined by the "ghns:checkAvailability" element in the
inlined schema.

2.3.2 Importing XML Schema

XML Schema components can be defined in separate schema files and be made
available to a WSDL2.0 description by using xs:import directly under types.

There are many cases where one would prefer having schema definitions in
separate schema files. One reason is the reusability of the schema definitions.
Inlined schema definitions are only available to the containing WSDL 2.0
description. Although WSDL 2.0 provides a wsdl:import mechanism for
importing other WSDL files, schema definitions inlined in an imported WSDL
document are NOT automatically made available to the importing WSDL 2.0
document, even though other WSDL 2.0 components (such as Interfaces,
Bindings, etc.) do become available. Therefore, if one wishes to share schema
definitions across several WSDL 2.0 descriptions, these schema definitions
should instead be placed in separate XML Schema documents and imported into
each WSDL 2.0 description using xs:import directly under types.

Let's see an example. Assuming the message types in Example 2-3 are defined
in a separate schema file named
"http://greath.example.com/2004/schemas/resSvc.xsd" with a target namespace
"http://greath.example.com/2004/schemas/resSvc", the schema definition can

then be brought into the WSDL 2.0 description using xs:import. Note that only
components in the imported namespace
"http://greath.example.com/2004/schemas/resSvc" are available for reference in
the WSDL 2.0 document.

Example 2-8. xs:imported Message Definitions that Are Visible to the Containing
WSDL 2.0 Description
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
. . . >
. . .

<types>
 <xs:import
namespace="http://greath.example.com/2004/schemas/resSvc"
 schemaLocation=
"http://greath.example.com/2004/schemas/resSvc.xsd"/>
</types>

. . .
</description>

It's important to note that xs:import used directly under wsdl:types has been
given a different visibility than xs:import used inside an inlined schema. An
inlined schema may use native XML schema xs:import to bring in external
schema definitions that are in different namespaces; However, though this is the
schema importing mechanism recommended for WSDL 1.1 in WS-I Basic Profile,
according to XML Schema specification, such enclosed message definitions are
only visible to the importing schema (in this case, the inlined schema). They are
not visible to the containing WSDL 2.0 description.

If we change Example 2-8 to use XML Schema's native xs:import element in an
inlined schema, the schema components defined in the namespace
http://greath.example.com/2004/schemas/resSvc are not available to our
example WSDL 2.0 definition any more.

Example 2-9. xs:imported Message Definitions in Inlined Schema Are Not
Visible to the Containing WSDL 2.0 Description
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
. . . >
. . .

<types>
 <xs:schema
targetNamespace="http://greath.example.com/2004/schemas/resSvcWrapper
">

 <xs:import
namespace="http://greath.example.com/2004/schemas/resSvc"
 schemaLocation=
"http://greath.example.com/2004/schemas/resSvc.xsd"/>
 </xs:schema>
</types>

. . .
</description>

Of course, an inlined XML schema may also use XML Schema's native
xs:include element to refer to schemas defined in separate files when the
included schema has no namespace or has the same namespace as the
including schema. In this case, according to XML Schema, the included schema
components become a part of the including schema as though they had been
copied and pasted into the including schema. Hence, the included schema
components are also available to the containing WSDL 2.0 description for
reference by QName.

The following example has the same effect as Example 2-3:

Example 2-10. xs:included Message Definitions in Inlined Schema Are Visible to
the Containing WSDL 2.0 Description
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
. . . >
. . .

<types>
 <xs:schema
targetNamespace="http://greath.example.com/2004/schemas/resSvc">
 <xs:include schemaLocation=
"http://greath.example.com/2004/schemas/resSvc.xsd"/>
 </xs:schema>
</types>

. . .
</description>

2.3.3 Summary of Import and Include Mechanisms

So far we have briefly covered both WSDL import and include and schema
import and include. The following table summarizes the similarities and
differences between the WSDL 2.0 and XML Schema include and import
mechanisms. We will talk a lot more about importing mechanisms in 3.1
Importing WSDL and 3.2 Importing Schemas

Table 2-1. Summary of Import and Include Mechanisms

Mechanism Object Meaning
Visibility of

Schema
Components

wsdl:import
WSDL 2.0
Namespace

Declare that WSDL 2.0
components refer to
WSDL 2.0
components from a
DIFFERENT
targetNamespace.

XML Schema
Components in the
imported
Description
component are NOT
visible to the
containing
description.

wsdl:include
WSDL 2.0
Document

Merge Interface,
Binding and Service
components from
another WSDL 2.0
document that has the
SAME
targetNamespace.

XML Schema
components in the
included Description
component's
{element
declarations} and
{type definitions}
properties are
visible to the
containing
description.

wsdl:types/ xs:import
XML
Schema
Namespace

Declare that XML
Schema components
refer to XML Schema
components from a
DIFFERENT
targetNamespace.

XML Schema
components in the
imported
namespace are
visible to the
containing
description.

wsdl:types/
xs:schema/xs:import

XML
Schema
Namespace

Declare that XML
Schema components
refer to XML Schema
components from a
DIFFERENT
targetNamespace.

XML Schema
components in the
imported
namespace are
NOT visible to the
containing
description.

wsdl:types/
xs:schema/xs:include

XML
Schema
Document

Merge XML Schema
components from
another XML Schema
document that has the
SAME or NO
targetNamespace.

XML Schema
components in the
included document
are visible to the
containing
description.

2.4 More on Interfaces

We previously mentioned that a WSDL 2.0 interface is basically a set of
operations. However, there are some additional capabilities that we have not yet
covered. First, let's review the syntax for the interface element.

2.4.1 Interface Syntax

Below is the XML syntax summary of the interface element, simplified by
omitting optional <documentation> elements:
<description targetNamespace="xs:anyURI" >

 . . .
 <interface name="xs:NCName"
 extends="list of xs:QName"?
 styleDefault="list of xs:anyURI"? >

 <fault name="xs:NCName"
 element="xs:QName"? >
 </fault>*

 <operation name="xs:NCName"
 pattern="xs:anyURI"
 style="list of xs:anyURI"?
 wsdlx:safe="xs:boolean"? >

 <input messageLabel="xs:NCName"?
 element="union of xs:QName, xs:Token"? >
 </input>*

 <output messageLabel="xs:NCName"?
 element="union of xs:QName, xs:Token"? >
 </output>*

 <infault ref="xs:QName" messageLabel="xs:NCName"? > </infault>*

 <outfault ref="xs:QName" messageLabel="xs:NCName"? >
</outfault>*

 </operation>*

 </interface>*
 . . .

</description>

The interface element has two optional attributes: styleDefault and extends.
The styleDefault attribute can be used to define a default value for the style
attributes of all operations under this interface (see WSDL 2.0 Part 1
"styleDefault attribute information item"). The extends attribute is for inheritance,
and is explained next.

2.4.2 Interface Inheritance

The optional extends attribute allows an interface to extend or inherit from one or
more other interfaces. In such cases the interface contains the operations of the
interfaces it extends, along with any operations it defines directly. Two things
about extending interfaces deserve some attention.

First, an inheritance loop (or infinite recursion) is prohibited: the interfaces that a
given interface extends must NOT themselves extend that interface either
directly or indirectly.

Second, we must explain what happens when operations from two different
interfaces have the same target namespace and operation name. There are two
cases: either the component models of the operations are the same, or they are
different. If the component models are the same (per the component comparison
algorithm defined in WSDL 2.0 Part 1 [WSDL 2.0 Core] " Equivalence of
Components ") then they are considered to be the same operation, i.e., they are
collapsed into a single operation, and the fact that they were included more than
once is not considered an error. (For operations, component equivalence
basically means that the two operations have the same set of attributes and
descendants.) In the second case, if two operations have the same name in the
same WSDL 2.0 target namespace but are not equivalent, then it is an error. For
the above reason, it is considered good practice to ensure that all operations
within the same target namespace are named uniquely.

Finally, since faults can also be defined as children of the interface element (as
described in the following sections), the same name-collision rules apply to those
constructs.

Let's say the GreatH hotel wants to maintain a standard message log operation
for all received messages. It wants this operation to be reusable across the
whole reservation system, so each service will send out, for potential use of a
logging service, the content of each message it receives together with a
timestamp and the originator of the message. One way to meet such requirement
is to define the log operation in an interface which can be inherited by other
interfaces. Assuming a messageLog element is already defined in the ghns
namespace with the required content, the inheritance use case is illustrated in
the following example. As a result of the inheritance, the reservationInterface
now contains two operations: opCheckAvailability and opLogMessage

Example 2-11. Interface Inheritance

<description ...>
 ...
 <interface name = "messageLogInterface" >

 <operation name="opLogMessage"

pattern="http://www.w3.org/ns/wsdl/out-only">
 <output messageLabel="out"
 element="ghns:messageLog" />
 </operation>

 </interface>

 <interface name="reservationInterface"
extends="tns:messageLogInterface" >

 <operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"
 wsdlx:safe = "true">
 <input messageLabel="In"
 element="ghns:checkAvailability" />
 <output messageLabel="Out"

element="ghns:checkAvailabilityResponse" />
 <outfault ref="tns:invalidDataFault"
messageLabel="Out"/>

 </operation>
 </interface>
 ...
</description>

Now let's have a look at the element children of interface, beginning with fault.

2.4.3 Interface Faults

The fault element is used to declare faults that may occur during execution of
operations of an interface. They are declared directly under interface, and
referenced from operations where they apply, in order to permit reuse across
multiple operations.

Faults are very similar to messages and can be viewed as a special kind of
message. Both faults and messages may carry a payload that is normally
described by an element declaration. However, WSDL 2.0 treats faults and
messages slightly differently. The messages of an operation directly refer to their
element declaration, however the faults of an operation indirectly refer to their
element declaration via a fault element that is defined on the interface.

The reason for defining faults at the interface level is to allow their reuse across
multiple operations. This design is especially beneficial when bindings are
defined, since in binding extensions like SOAP there is additional information that
is associated with faults. In the case of SOAP, faults have codes and subcodes
in addition to a payload. By defining faults at the interface level, common codes
and subcodes can be associated with them, thereby ensuring consistency across
all operations that use the faults

The fault element has a required name attribute that must be unique within the
parent interface element, and permits it to be referenced from operation
declarations. The optional element attribute can be used to indicate a schema for
the content or payload of the fault message. Its value should be the QName of a

global element defined in the types section. Please note that when other type
systems are used to define the schema for a fault message, additional attributes
may need to be defined via WSDL 2.0's attribute extension mechanism to allow
the schema to be associated with the fault.

2.4.4 Interface Operations

As shown earlier, the operation element is used to indicate an operation
supported by the containing interface. It associates message schemas with a
message exchange pattern (MEP), in order to abstractly describe a simple
interaction with a Web service.

2.4.4.1 Operation Attributes

An operation has two required attributes and one optional attribute:

 A required name attribute, as seen already, which must be unique within
the interface.

 A required pattern attribute whose value must be an absolute URI that
identifies the desired MEP for the operation. MEPs are further explained
in 2.4.4.3 Understanding Message Exchange Patterns (MEPs).

 An optional style attribute whose value is a list of absolute URIs. Each
URI identifies a certain set of rules that were followed in defining this
operation. It is an error if a particular style is indicated, but the associated
rules are not followed. [WSDL 2.0 Adjuncts] defines a set of styles,
including

o RPC Style. The RPC style is selected when the style is assigned
the value http://www.w3.org/ns/wsdl/rpc. It places restrictions for
Remote Procedure Call-types of interactions.

o IRI Style. The IRI style is selected when the style is assigned the
value http://www.w3.org/ns/wsdl/style/iri. It places restrictions on
message definitions so they may be serialized into something like
HTTP URL encoded.

o The Multipart style. The Multipart style is selected when the style
is assigned the value http://www.w3.org/ns/wsdl/style/multipart. In
the HTTP binding, for XForms clients, a message must be defined
following the Multipart style and serialized as "Multipart/form-data".

You can find more details of these WSDL 2.0 predefined styles. Section
4.3 RPC Style provides an example of using the RPC style. [WSDL 2.0
Adjuncts] provides examples for the IRI style and Multipart style.

Note that [WSDL 2.0 Adjuncts] provides a predefined extension for indicating
operation safety. The wsdlx:safe global attribute whose value is a boolean can
be used with an operation to indicate whether the operation is asserted to be
"safe" (as defined in Section 3.5 of the Web Architecture [Web Architecture]) for
clients to invoke. In essence, a safe operation is any operation that does not give

the client any new obligations. For example, an operation that permits the client
to check prices on products typically would not obligate the client to buy those
products, and thus would be safe, whereas an operation for purchasing products
would obligate the client to pay for the products that were ordered, and thus
would not be safe.

An operation should be marked safe (by using the wsdlx:safe and by setting its
value to "true") if it meets the criteria for a safe interaction defined in Section 3.5
of the Web Architecture [Web Architecture], because this permits the
infrastructure to perform efficiency optimizations, such as pre-fetch, re-fetch and
caching.

The default value of this attribute is false. If it is false or is not set, then no
assertion is made about the safety of the operation; thus the operation may or
may not be safe.

2.4.4.2 Operation Message References

An operation will also have input, output,infault, and/or outfault element
children that specify the ordinary and fault message types to be used by that
operation. The MEP specified by the pattern attribute determines which of these
elements should be included, since each MEP has placeholders for the message
types involved in its pattern.

Since operations were already discussed in 2.1.4 Defining an Interface, this
section will merely comment on additional capabilities that were not previously
explained.

2.4.4.2.1 THE MESSAGELABEL ATTRIBUTE

The messageLabel attribute of the input and output elements is optional. It is not
necessary to explicitly set the messageLabel when the MEP in use is one of the
eight MEPs predefined in WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts] and it has only
one message with a given direction.

2.4.4.2.2 THE ELEMENT ATTRIBUTE

The element attribute of the input and output elements is used to specify the
message content schema (aka payload schema) when the content model is
defined using XML Schema. As we have seen already, it can specify the QName
of an element schema that was defined in the types section. However,
alternatively it can specify one of the following tokens:
#any

The message content is any single element.
#none

There is no message content, i.e., the message payload is empty.
#other

The message content is described by a non-XML type system. Extension
attributes specify the type.

The element attribute is also optional. If it is not specified, then the message
content is described by a non-XML type system.

Note that there are situations that the information conveyed in the element
attribute is not sufficient for a service implementation to uniquely identify an
incoming message and dispatch it to an appropriate operation. In such situations,
additional means may be required to aid identifying an incoming message. See
5.1 Enabling Easy Message Dispatch for more detail.

2.4.4.2.3 MULTIPLE INFAULT OR OUTFAULT ELEMENTS

When infault and/or outfault occur multiple times within an operation, they
define alternative fault messages.

2.4.4.3 Understanding Message Exchange Patterns (MEPs)

WSDL 2.0 message exchange patterns (MEPs) are used to define the sequence
and cardinality of the abstract messages in an operation. By design, WSDL 2.0
MEPs are abstract. First of all, they abstract out specific message types. MEPs
identify placeholders for messages, and placeholders are associated with
specific message types when an operation is defined, which includes specifying
which MEP to use for that operation. Secondly, unless explicitly stated otherwise,
MEPs also abstract out binding-specific information like timing between
messages, whether the pattern is synchronous or asynchronous, and whether
the messages are sent over a single or multiple channels.

It's worth pointing out that WSDL 2.0 MEPs do not exhaustively describe the set
of messages that may be exchanged between a service and other nodes. By
some prior agreement, another node and/or the service may send other
messages (to each other or to other nodes) that are not described by the MEP.
For instance, even though an MEP may define a single message sent from a
service to one other node, a service defined by that MEP may multicast that
message to other nodes. To maximize reuse, WSDL 2.0 message exchange
patterns identify a minimal contract between other parties and Web Services, and
contain only information that is relevant to both the Web service and the client
that engages that service.

A total of eight MEPs are defined in [WSDL 2.0 Adjuncts]. These MEPs should
cover the most common use cases, but they are not meant to be an exhaustive
list of MEPs that can ever be used by operations. More MEPs can be defined for
particular application needs by interested parties. (See 2.4.4.3 Understanding
Message Exchange Patterns (MEPs))

For the eight MEPs defined by WSDL 2.0, some of them are variations of others
based on how faults may be generated. For example, the In-Only pattern
("http://www.w3.org/ns/wsdl/in-only") consists of exactly one message received
by a service from some other node. No fault can be generated. As a variation of

In-Only, Robust In-Only pattern ("http://www.w3.org/ns/wsdl/robust-in-only") also
consists of exactly one message received by a service, but in this case faults can
be triggered by the message and must be delivered to the originator of the
message. If there is no path to this node, the fault must be discarded. For details
about the common fault generation models used by the eight WSDL 2.0 MEPs,
see [WSDL 2.0 Adjuncts].

Depending on how the first message in the MEP is initiated, the eight WSDL 2.0
MEPs may be grouped into two groups: in-bound MEPs, for which the service
receives the first message in the exchange, and out-bound MEPs, for which the
service sends out the first message in the exchange. (Such grouping is not
provided in the WSDL 2.0 specification and is presented here only for the
purpose of easy reference in this primer).

A frequently asked question about out-bound MEPs is how a service knows
where to send the message. Services using out-bound MEPs are typically part of
large scale integration systems that rely on mapping and routing facilities. In such
systems, out-bound MEPs are useful for specifying the functionality of a service
abstractly, including its requirements for potential customers, while endpoint
address information can be provided at deployment or runtime by the underlying
integration infrastructure. For example, the GreatH hotel reservation system may
require that every time a customer interacts with the system to check availability,
data about the customer must be logged by a CRM system. At design time, it's
unknown which particular CRM system would be used together with the
reservation system. To address this requirement, we may change the
"reservationInterface" in Example 2-1 to include an out-bound logInquiry
operation. This logInquiry operation advertises to potential service clients that
customer data will be made available by the reservation service at run time.
When the reservation service is deployed to GreatH's IT landscape, appropriate
configuration time and run time infrastructure will help determine which CRM
system will get the customer data and log it appropriately. It's worth noting that in
addition to being used by a CRM system for customer management purpose, the
same data may also be used by a system performance analysis tool for different
purpose. Providing an out-bound operation in the reservation service enables
loose coupling and so improves the overall GreatH IT landscape's flexibility and
scalability.

Example 2-12. Use of outbound MEPs

<description ...>
 ...
 <interface name="reservationInterface">
 ...
 <operation name="opCheckAvailability" ... >

 <operation name="opLogInquiry"

pattern="http://www.w3.org/ns/wsdl/out-only">
 <output messageLabel="Out"
element="ghns:customerData" />
 </operation>

 </interface>
 ...
</description>

Although the eight MEPs defined in WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts] are
intended to cover most use cases, WSDL 2.0 has designed this set to be
extensible. This is why MEPs are identified by URIs rather than a fixed set of
tokens.

For more about defining new MEPs, see 4.2 Defining New MEPs.

2.5 More on Bindings

Bindings are used to supply protocol and encoding details that specify how
messages are to be sent or received. Each binding element uses a particular
binding extension to specify such information. WSDL 2.0 Part 2 [WSDL 2.0
Adjuncts] defines several binding extensions that are typically used. However,
binding extensions that are not defined in WSDL 2.0 Part 2 can also be used,
provided that client and service toolkits support them.

Binding information must be supplied for every operation in the interface that is
used in an endpoint. However, if the desired binding extension provides suitable
defaulting rules, then the information will only need to be explicitly supplied at the
interface level, and the defaulting rules will implicitly propagate the information to
the operations of the interface. For example, see the Default Binding Rules of
SOAP binding extension in WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts].

2.5.1 Syntax Summary for Bindings

Since bindings are specified using extensions to the WSDL 2.0 language (i.e.,
binding extensions are not in the WSDL 2.0 namespace), the XML for expressing
a binding will consist of a mixture of elements and attributes from WSDL 2.0
namespace and from the binding extension's namespace, using WSDL 2.0's
open content model.

Here is a syntax summary for binding, simplified by omitting optional
documentation elements. Bear in mind that this syntax summary only shows the
elements and attributes defined within the WSDL 2.0 namespace. When an
actual binding is defined, elements and attributes from the namespace of the
desired binding extension will also be intermingled as required by that particular
binding extension.
<description targetNamespace="xs:anyURI" >
 . . .
 <binding name="xs:NCName" interface="xs:QName"? >

 <fault ref="xs:QName" > </fault>*

 <operation ref="xs:QName" >
 <input messageLabel="xs:NCName"? > </input>*
 <output messageLabel="xs:NCName"? > </output>*

 <infault ref="xs:QName" messageLabel="xs:NCName"? > </infault>*
 <outfault ref="xs:QName" messageLabel="xs:NCName"? >
</outfault>*
 </operation>*

 </binding>*
 . . .
</description>

The binding syntax parallels the syntax of interface: each interface construct
has a binding counterpart. Despite this syntactic similarity, they are indeed
different constructs, since they are in different symbol spaces and are designed
for different purposes.

2.5.2 Reusable Bindings

A binding can either be reusable (applicable to any interface) or non-reusable
(specified for a particular interface). Non-reusable bindings may be specified at
the granularity of the interface (assuming the binding extension provides suitable
defaulting rules), or on a per-operation basis if needed. A non-reusable binding
was demonstrated in 2.1.5 Defining a Binding.

To define a reusable binding, the binding element simply omits the interface
attribute and omits specifying any operation-specific and fault-specific binding
details. Endpoints can later refer to a reusable binding in the same manner as for
a non-reusable binding. Thus, a reusable binding becomes associated with a
particular interface when it is referenced from an endpoint, because an endpoint
is part of a service, and the service specifies a particular interface that it
implements. Since a reusable binding does not specify an interface, reusable
bindings cannot specify operation-specific details. Therefore, reusable bindings
can only be defined using binding extensions that have suitable defaulting rules,
such that the binding information only needs to be explicitly supplied at the
interface level.

2.5.3 Binding Faults

A binding fault associates a concrete message format with an abstract fault of
an interface. It describes how faults that occur within a message exchange of an
operation will be formatted, since the fault does not occur by itself. Rather, a fault
occurs as part of a message exchange specified by an interface operation and
its binding counterpart, the binding operation.

A binding fault has one required ref attribute which is a reference, by QName,
to an interface fault. It identifies the abstract interface fault for which binding
information is being specified. Be aware that the value of ref attribute of all the
faults under a binding must be unique. That is, one cannot define multiple
bindings for the same interface fault within a given binding.

2.5.4 Binding Operations

A binding operation describes a concrete binding of an interface operation to a
concrete message format. An interface operation is uniquely identified by the
WSDL 2.0 target namespace of the interface and the name of the operation
within that interface, via the required ref attribute of binding operation. As with
faults, for each operation within a binding, the value of the ref attribute must be
unique.

2.5.5 The SOAP Binding Extension

The WSDL 2.0 SOAP Binding Extension (see WSDL 2.0 Part 2 [WSDL 2.0
Adjuncts]) was primarily designed to support the features of SOAP 1.2 [SOAP
1.2 Part 1: Messaging Framework]. However, for backwards compatibility, it also
provides some support for SOAP 1.1 [SOAP 1.1].

An example using the WSDL 2.0 SOAP binding extension was already presented
in 2.1.5 Defining a Binding, but some additional points are worth mentioning:

 Because the same binding extension is used for both SOAP 1.2 and
SOAP 1.1, a wsoap:version attribute is provided to allow you to indicate
which version of SOAP you want. If this attribute is not specified, it
defaults to SOAP 1.2.

 The WSDL 2.0 SOAP binding extension defines a set of default rules, so
that bindings can be specified at the interface level or at the operation
level (or both), with the operation level taking precedence. However, it
does not define default binding rules for faults. Thus, if a given interface
defines any faults, then corresponding binding information must be
explicitly provided for each such fault.

 If HTTP is used as the underlying protocol, then the binding can (and
should) control whether each operation will use HTTP GET or POST. (See
2.5.7 HTTP GET Versus POST: Which to Use?.)

Here is an example that illustrates both a SOAP 1.2 binding (as seen before) and
a SOAP 1.1 binding.

Example 2-13. SOAP 1.2 and SOAP 1.1 Bindings
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
 xmlns:tns="http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns="http://greath.example.com/2004/schemas/resSvc"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/">

 <!-- SOAP 1.2 Binding -->
 <binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="tns:opCheckAvailability"
 wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-
response"/>

 <fault ref="tns:invalidDataFault"
 wsoap:code="soap:Sender"/>

 </binding>

 <!-- SOAP 1.1 Binding -->
 <binding name="reservationSOAP11Binding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:version="1.1"
 wsoap:protocol="http://www.w3.org/2006/01/soap11/bindings/HTTP/">

 <operation ref="tns:opCheckAvailability"/>

 <fault ref="tns:invalidDataFault"
 wsoap:code="soap11:Client"/>

 </binding>

 <service name="reservationService"
 interface="tns:reservationInterface">

 <!-- SOAP 1.2 End Point -->
 <endpoint name="reservationEndpoint"
 binding="tns:reservationSOAPBinding"
 address="http://greath.example.com/2004/reservation"/>

 <!-- SOAP 1.1 End Point -->
 <endpoint name="reservationEndpoint2"
 binding="tns:reservationSOAP11Binding"
 address="http://greath.example.com/2004/reservation"/>

 </service>
</description>

2.5.5.1 Explanation of Example

Most lines in this example is the same as previously explained in 2.1.5 Defining
a Binding, so we'll only point out lines that are demonstrating something new for
SOAP 1.1 binding.
<description ...
xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/">

This is the namespace for terms defined within the SOAP 1.1 specification
[SOAP 1.1].

<binding...wsoap:version="1.1"

This line indicates that this binding uses SOAP 1.1 [WSDL 2.0 SOAP 1.1
Binding], rather than SOAP 1.2.

wsoap:protocol="http://www.w3.org/2006/01/soap11/bindings/HTTP/">

This line specifies that HTTP should be used as the underlying
transmission protocol. See also 2.5.7 HTTP GET Versus POST: Which
to Use?.

<operation ref="tns:opCheckAvailability"/>

Note that wsoap:mep is not applicable to SOAP 1.1 binding.
<fault...wsoap:code="soap11:Client"/>

This line specifies the SOAP 1.1 fault code that will be used in transmitting
invalidDataFault.

2.5.6 The HTTP Binding Extension

In addition to the WSDL 2.0 SOAP binding extension described above, WSDL
2.0 Part 2 [WSDL 2.0 Adjuncts] defines a binding extension for HTTP 1.1 [IETF
RFC 2616] and HTTPS [IETF RFC 2818], so that these protocols can be used
natively to send and receive messages, without first encoding them in SOAP.

The HTTP binding extension provides many features to control:

 Which HTTP operation will be used. (GET, PUT, POST, DELETE, and
other HTTP operations are supported.)

 Input, output and fault serialization

 Transfer codings

 Authentication requirements

 Cookies

 HTTP over TLS (https)

As with the WSDL 2.0 SOAP binding extension, the HTTP binding extension also
provides defaulting rules to permit binding information to be specified at the
interface level and used by default for each operation in the affected interface,
however, defaulting rules are not provided for binding faults.

Here is an example of using the HTTP binding extension to check hotel room
availability at GreatH.

Example 2-14. HTTP Binding Extension
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
 . . .
 xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

 . . .
 <binding name="reservationHTTPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/http"
 whttp:methodDefault="GET">

 <operation ref="tns:opCheckAvailability"

 whttp:location="{checkInDate}" />
 </binding>

 <service name="reservationService"
 interface="tns:reservationInterface">

 <!-- HTTP 1.1 GET End Point -->
 <endpoint name="reservationEndpoint"
 binding="tns:reservationHTTPBinding"
 address="http://greath.example.com/2004/checkAvailability/"/>

 </service>
 . . .
</description>

2.5.6.1 Explanation of Example

Most of this example is the same as previously explained in 2.1.5 Defining a
Binding, so we'll only point out lines that are demonstrating something new for
HTTP binding extension.
<description...xmlns:whttp="http://www.w3.org/ns/wsdl/http" >

This defines the namespace prefix for elements and attributes defined by
the WSDL 2.0 HTTP binding extension.

<binding...type="http://www.w3.org/ns/wsdl/http"

This declares the binding as being an HTTP binding.
whttp:methodDefault="GET">

The default method for operations in this interface will be HTTP GET.
whttp:location="{checkInDate}" >

The whttp:location attribute specifies a pattern for serializing input
message instance data into the path component of the request URI. The
default binding rules for HTTP specify that the default input serialization
for GET is application/x-www-form-urlencoded. Curly braces are used to
specify the name of a schema type in the input message schema, which
determines what input instance data will be inserted into the path
component of the request URI. The curly brace-enclosed name will be
replaced with instance data in constructing the path component.
Remaining input instance data (not specified by whttp:location) will
either be serialized into the query string portion of the URI or into the
message body, as follows: if a "/" is appended to a curly brace-enclosed
type name, then any remaining input message instance data will be
serialized into the message body. Otherwise it will be serialized into query
parameters.

Thus, in this example, each of the elements in the tCheckAvailability
type will be serialized into the query parameters. A sample resulting URI
would therefore be
http://greath.example.com/2004/checkAvailability/5-5-

5?checkOutDate=6-6-5&roomType=foo.

Here is an alternate example that appends "/" to the type name in order to
serialize the remaining instance data into the message body:

Example 2-15. Serializing a Subset of Types in the Path

. . .
<operation ref="tns:opCheckAvailability"
 whttp:location="bycheckInDate/{checkInDate/}" >
. . .

This would instead serialize to a request URI such as:
http://greath.example.com/2004/checkAvailability/bycheckInDate/5-5-5.
The rest of the message content would go to the HTTP message body.

2.5.7 HTTP GET Versus POST: Which to Use?

When a binding using HTTP is specified for an operation, the WSDL 2.0 author
must decide which HTTP method is appropriate to use -- usually a choice
between GET and POST. In the context of the Web as a whole (rather than
specifically Web services), the W3C Technical Architecture Group (TAG) has
addressed the question of when it is appropriate to use GET, versus when to use
POST, in a finding entitled URIs, Addressability, and the use of HTTP GET and
POST ([W3C TAG Finding: Use of HTTP GET]). From the abstract:

". . . designers should adopt [GET] for safe operations such as simple queries.
POST is appropriate for other types of applications where a user request has the
potential to change the state of the resource (or of related resources). The finding
explains how to choose between HTTP GET and POST for an application taking
into account architectural, security, and practical considerations."

Recall that the concept of a safe operation was discussed in 2.4.4.1 Operation
Attributes. (Briefly, a safe operation is one that does not cause the invoker to
incur new obligations.) Although the wsdlx:safe attribute of an interface
operation indicates that the abstract operation is safe, it does not automatically
cause GET to be used at the HTTP level when the binding is specified. The
choice of GET or POST is determined at the binding level:

 If the WSDL 2.0 SOAP binding extension is used (2.5.5 The SOAP
Binding Extension), with HTTP as the underlying transport protocol, then
GET may be specified by setting:
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/"

on the binding element (to indicate the use of HTTP as the underlying
protocol); and
wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response/"

on the binding operation element, which causes GET to be used by
default.

 If the WSDL 2.0 HTTP binding extension is used directly (2.5.6 The HTTP
Binding Extension), GET may be specified by setting either:
whttp:methodDefault="GET"

on the binding element; or
whttp:method="GET"

on the binding operation element, which overrides whttp:methodDefault if
set on the binding element; or
wsdlx:safe="true"

on the bound interface operation . When the above two items are not
explicitly set, and when the bound interface operation is marked safe, the
HTTP Binding will by default set the method to GET.

For example, in the GreatH interface definition shown in Example 2-4, the
wsdlx:safe attribute is set to "true". The HTTP binding definition in Example 2-14
may take advantage of that and be simplified as below and still have the http
method set to GET by default:

Example 2-16. Safety and HTTP Binding
<?xml version="1.0" encoding="utf-8" ?>

<binding name="reservationHTTPBinding"

 interface="tns:reservationInterface"

 type="http://www.w3.org/ns/wsdl/http" >

 <operation ref="tns:opCheckAvailability"

 whttp:location="{checkInDate}"/>

 </binding>

3. Advanced Topics I: Importing Mechanisms

3.1 Importing WSDL

In some circumstances WSDL authors may want to split up a Web service
description into two or more documents. For example, if a description is getting
long or is being developed by several authors, then it is convenient to divide it
into several parts. Another very important case is when you expect parts of the
description to be reused in several contexts. Clearly it is undesirable to cut and
paste sections of one document into another, since that is error prone and leads
to maintenance problems. More importantly, you may need to reuse components
that belong to a wsdl:targetNamespace that is different than that of the document
you are writing, in which case the rules of WSDL 2.0 prevent you from simply
cutting and pasting them into your document.

To solve these problems, WSDL 2.0 provides two mechanisms for modularizing
Web service description documents: import and include. This section discusses
the import mechanism and describes some typical cases where it may be used.

The import mechanism lets one refer to the definitions of Web service
components that belong to other namespaces. To illustrate this, consider the

GreatH hotel reservation service. Suppose that the reservation service uses a
standard credit card validation service that is provided by a financial services
company. Furthermore, suppose that companies in the financial services industry
decided that it would be useful to report errors in credit card validation using a
common set of faults, and have defined these faults in the following Web service
description:

Example 3-1. Standard Credit Card Validation Faults (credit-card-faults.wsdl)
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace="http://finance.example.com/CreditCards/wsdl"
 xmlns:tns="http://finance.example.com/CreditCards/wsdl"
 xmlns:cc="http://finance.example.com/CreditCards/xsd">

 <documentation>
 This document describes standard faults for use
 by Web services that process credit cards.
 </documentation>

 <types>
 <xs:import xmlns:xs="http://www.w3.org/2001/XMLSchema"

namespace="http://finance.example.com/CreditCardFaults/xsd"
 schemaLocation="credit-card-faults.xsd" />
 </types>

 <interface name="creditCardFaults">

 <fault name="cancelledCreditCard"
element="cc:CancelledCreditCard">
 <documentation>Thrown when the credit card has been
cancelled.</documentation>
 </fault>

 <fault name="expiredCreditCard"
element="cc:ExpiredCreditCard">
 <documentation>Thrown when the credit card has
expired.</documentation>
 </fault>

 <fault name="invalidCreditCardNumber"
element="cc:InvalidCreditCardNumber">
 <documentation>Thrown when the credit card number is
invalid.
 This fault will occur if the wrong credit card type
is specified.
 </documentation>
 </fault>

 <fault name="invalidExpirationDate"
element="cc:InvalidExpirationDate">
 <documentation>Thrown when the expiration date is
invalid.</documentation>
 </fault>

 </interface>

</description>

This example defines an interface, creditCardFaults, that contains four faults,
cancelledCreditCard, expiredCreditCard, invalidCreditCardNumber, and
invalidExpirationDate. These components belong to the namespace
http://finance.example.com/CreditCards/wsdl.

Because these faults are defined in a different wsdl:targetNamespace than the
one used by the GreatH Web service description, import must be used to make
them available within the GreatH Web service description, as shown in the
following example:

Example 3-2. Using the Standard Credit Card Validation Faults (use-credit-card-
faults.wsdl)
<?xml version="1.0"?>
<description
 targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
 xmlns:ghns="http://greath.example.com/2004/schemas/resSvc"
 xmlns:cc="http://finance.example.com/CreditCards/wsdl"
 xmlns="http://www.w3.org/ns/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 Description: The definition of the reservation Web
service of
 GreatH hotel. Author: Joe Somebody Date: 05/17/2004
 </documentation>

 <import
namespace="http://finance.example.com/CreditCards/wsdl"
 location="credit-card-faults.wsdl"/>
 . . .
 <interface name="reservation" extends="cc:creditCardFaults">
 . . .
 <operation name="makeReservation"
 pattern="http://www.w3.org/ns/wsdl/in-out">

 <input messageLabel="In"
element="ghns:makeReservation" />

 <output messageLabel="Out"

element="ghns:makeReservationResponse" />

 <outfault ref="invalidDataFault"
messageLabel="Out" />

 <outfault ref="cc:cancelledCreditCard"
messageLabel="Out" />
 <outfault ref="cc:expiredCreditCard"
messageLabel="Out" />
 <outfault ref="cc:invalidCreditCardNumber"
messageLabel="Out" />
 <outfault ref="cc:invalidExpirationDate"
messageLabel="Out" />

 </operation>
 </interface>
</description>

The hotel reservation service declares that it is using components from another
namespace via the import> element. The import element has a required
namespace attribute that specifies the other namespace, and an optional location
attribute that gives the processor a hint where to find the description of the other
namespace. The reservation interface extends the creditCardFault interface
from the other namespace in order to make the faults available in the reservation
interface. Finally, the makeReservation operation refers to the standard faults in
its outfault elements.

Another typical situation for using imports is to define a standard interface that is
to be implemented by many services. For example, suppose the hotel industry
decided that it was useful to have a standard interface for making reservations.
This interface would belong to some industry association namespace, e.g.
http://hotels.example.com/reservations/wsdl. Each hotel that implemented
the standard reservation service would define a service in its own namespace,
e.g. http://greath.example.com/2004/wsdl/resSvc. The description of each
service would import the http://hotels.example.com/reservations/wsdl
namespace and refer to the standard reservation interface in it.

3.2 Importing Schemas

WSDL 2.0 documents may contain one or more XML schemas defined within the
wsdl:types element. This section illustrates the correct way to refer to these
schemas, both from within the same document and from other documents.

3.2.1 Schemas in Imported Documents

In this example, we consider some GreatH Hotel Web services that retrieve and
update reservation details. The retrieval Web service is defined in the
retrieveDetails.wsdl WSDL 2.0 document, along with a schema for the
message format. The updating Web service is defined in the updateDetails.wsdl
WSDL 2.0 document which imports the first document and refers to both WSDL
2.0 and schema definitions contained in the imported document.

Example 3-3 shows the definition of the retrieval Web service in the
http://greath.example.com/2004/services/retrieveDetails namespace. This
WSDL 2.0 document also contains an inline schema that describes the
reservation detail in the
http://greath.example.com/2004/schemas/reservationDetails namespace.
This schema is visible to the retrieveDetailsInterface interface definition
which refers to it in the retrieve operation's output message.

Example 3-3. The Retrieve Reservation Details Web Service:
retrieveDetails.wsdl

 <?xml
version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/retrieveDeta
ils"

xmlns:tns="http://greath.example.com/2004/services/retrieveDetails"

xmlns:wdetails="http://greath.example.com/2004/schemas/reservationDet
ails"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 This document describes the GreatH Retrieve
Reservation Details
 Web service.
 </documentation>

 <types>
 <xs:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://greath.example.com/2004/schemas/reservationDe
tails">

 <xs:element name="reservationDetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element
name="confirmationNumber"
 type="string"
/>
 <xs:element
name="checkInDate" type="date" />
 <xs:element
name="checkOutDate" type="date" />
 <xs:element
name="roomType" type="string" />
 <xs:element
name="smoking" type="boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </types>

 <interface name="retrieveDetailsInterface">

 <operation name="retrieve"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In" element="#none" />
 <output messageLabel="Out"
 element="wdetails:reservationDetails"
/>
 </operation>

 </interface>

</description>

Example 3-4 shows the definition of the updating Web service in the
http://greath.example.com/2004/services/updateDetails namespace. The
updateDetailsInterface interface extends the retrieveDetailsInterface
interface. However, the retrieveDetailsInterface belongs to the
http://greath.example.com/2004/services/retrieveDetails namespace, so
updateDetails.wsdl must import retrieveDetails.wsdl to make that
namespace visible.

The updateDetailsInterface interface also uses the reservationDetails
element definition that is contained in the inline schema of the imported
retrieveDetails.wsdl document. However, this schema is not automatically
visible within the updateDetails.wsdl document. To make it visible, the
updateDetails.wsdl document must import the namespace of the inline schema
within the types element using the XML schema import element.

In this example, the schemaLocation attribute of the import element has been
omitted. The schemaLocation attribute is a hint to the WSDL 2.0 processor that
tells it where to look for the imported schema namespace. However, the WSDL
2.0 processor has already processed the retrieveDetails.wsdl document which
contains the imported namespace in an inline schema so it should not need any
hints. However, this behavior depends on the implementation of the processor
and so cannot be relied on.

Although the WSDL 2.0 document may validly omit the schemaLocation attribute,
it is a best practice to either provide a reliable value for it or move the inline
schema into a separate document, say reservationDetails.xsd, and directly
import it in the types element of both retrieveDetails.wsdl and
updateDetails.wsdl. In general, schemas that are expected to be referenced
from more than one WSDL 2.0 document should be defined in a separate
schema document rather than be inlined.

Example 3-4. The Update Reservation Details Web Service: updateDetails.wsdl
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/updateDetail
s"

xmlns:tns="http://greath.example.com/2004/services/updateetails"

xmlns:retrieve="http://greath.example.com/2004/services/retrieveDetai
ls"

xmlns:details="http://greath.example.com/2004/schemas/reservationDeta
ils"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>

 This document describes the GreatH Update Reservation
Details
 Web service.
 </documentation>

 <import

namespace="http://greath.example.com/2004/services/retrieveDetails"
 location="retrieveDetails.wsdl" />

 <types>
 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationDetails"
/>
 </types>

 <interface name="updateDetailsInterface"
 extends="retrieve:retrieveDetailsInterface">

 <operation name="update"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
 element="details:reservationDetails"
/>
 <output messageLabel="Out"
 element="details:reservationDetails"
/>
 </operation>

 </interface>

</description>

3.2.2 Multiple Inline Schemas in One Document

A WSDL 2.0 document may define multiple inline schemas in its types element.
The two or more schemas may have the same target namespace provided that
they do not define the same elements or types. It is an error to define the same
element or type more than once, even if the definitions are identical.

Each namespace of an inline schema becomes visible to the Web service
definitions. However, the namespaces are not automatically visible to the other
inline schemas. Each inline schema must explicitly import any other namespace
it references. The schemaLocation attribute is not required in this case since the
WSDL 2.0 processor knows the location of each schema by virtue of having
processed the enclosing WSDL 2.0 document.

To illustrate this, consider Example 3-5 which contains two inline schemas. The
http://greath.example.com/2004/schemas/reservationItems namespace
contains some elements for items that appear in the reservation details. The
http://greath.example.com/2004/schemas/reservationDetails namespace
contains the reservationDetails element which refers to the item elements. The
schema for the http://greath.example.com/2004/schemas/reservationDetails

namespace contains an import element that imports the
http://greath.example.com/2004/schemas/reservationItems namespace. No
schemaLocation attribute is required for this import since the schema is defined
inline in the importing document.

Example 3-5. Multiple Inline Schemas: retrieveItems.wsdl
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/retrieveDeta
ils"

xmlns:tns="http://greath.example.com/2004/services/retrieveDetails"

xmlns:wdetails="http://greath.example.com/2004/schemas/reservationDet
ails"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 This document describes the GreatH Retrieve
Reservation Details
 Web service.
 </documentation>

 <types>

 <xs:schema
targetNamespace="http://greath.example.com/2004/schemas/reservationIt
ems">

 <xs:element name="confirmationNumber"
type="string" />
 <xs:element name="checkInDate" type="date" />
 <xs:element name="checkOutDate" type="date"
/>
 <xs:element name="roomType" type="string" />
 <xs:element name="smoking" type="boolean" />

 </xs:schema>

 <xs:schema
targetNamespace="http://greath.example.com/2004/schemas/reservationDe
tails"

xmlns:items="http://greath.example.com/2004/schemas/reservationItems"
>

 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationItems"
/>

 <xs:element name="reservationDetails">
 <xs:complexType>
 <xs:sequence>

 <xs:element
ref="items:confirmationNumber" />
 <xs:element
ref="items:checkInDate" />
 <xs:element
ref="items:checkOutDate" />
 <xs:element
ref="items:roomType" />
 <xs:element
ref="items:smoking" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 </types>

 <interface name="retrieveDetailsInterface">

 <operation name="retrieve"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In" element="#none" />
 <output messageLabel="Out"
 element="wdetails:reservationDetails"
/>
 </operation>

 </interface>

</description>

3.2.3 The schemaLocation Attribute

In the preceding examples, schemas were defined inline in WSDL 2.0
documents. This section discusses the correct way to specify a schemaLocation
attribute on a schema import element to provide a processor with a hint for
locating these schemas.

Example 3-4 shows how one WSDL 2.0 document imports a schema defined in
another, i.e. Example 3-3. Similarly, Example 3-5 shows how one schema in a
WSDL 2.0 document imports another schema defined in the same document. In
both of these examples, the schemaLocation attribute was omitted since the
WSDL 2.0 processor was assumed to know how to locate the imported schemas
because they were part of the WSDL 2.0 documents being processed. The
schemaLocation attribute can be used to give the processor a URI reference that
explicitly locates the schemas. A URI reference is a URI plus an optional
fragment identifier that indicates part of the resource. For schemas, the fragment
should identify the schema element. The simplest way to accomplish this is to use
the id attribute, however XPointer (see [XPointer Framework]) can also be used.

3.2.3.1 Using the id Attribute to Identify Inline Schemas

Example 3-6 shows the use of the id attribute. Both of the inline schemas have
id attributes. The id of the
http://greath.example.com/2004/schemas/reservationItems schema is items
and the id of the http://greath.example.com/2004/schemas/reservationDetails
schema is details. The import element in the
http://greath.example.com/2004/schemas/reservationDetails schema uses
the id of the http://greath.example.com/2004/schemas/reservationItems
schema in the schemaLocation attribute, i.e. #items.

Example 3-6. Using Ids in Inline Schemas: schemaIds.wsdl
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/retrieveDeta
ils"

xmlns:tns="http://greath.example.com/2004/services/retrieveDetails"

xmlns:wdetails="http://greath.example.com/2004/schemas/reservationDet
ails"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 This document describes the GreatH Retrieve
Reservation Details
 Web service.
 </documentation>

 <types>

 <xs:schema id="items"

targetNamespace="http://greath.example.com/2004/schemas/reservationIt
ems">

 <xs:element name="confirmationNumber"
type="string" />
 <xs:element name="checkInDate" type="date" />
 <xs:element name="checkOutDate" type="date"
/>
 <xs:element name="roomType" type="string" />
 <xs:element name="smoking" type="boolean" />

 </xs:schema>

 <xs:schema id="details"

targetNamespace="http://greath.example.com/2004/schemas/reservationDe
tails"

xmlns:items="http://greath.example.com/2004/schemas/reservationItems"
>

 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationItems"
 schemaLocation="#items" />

 <xs:element name="reservationDetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element
ref="items:confirmationNumber" />
 <xs:element
ref="items:checkInDate" />
 <xs:element
ref="items:checkOutDate" />
 <xs:element
ref="items:roomType" />
 <xs:element
ref="items:smoking" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 </types>

 <interface name="retrieveDetailsInterface">

 <operation name="retrieve"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In" element="#none" />
 <output messageLabel="Out"
 element="wdetails:reservationDetails"
/>
 </operation>

 </interface>

</description>

4. Advanced Topics II: Extensibility and Predefined
Extensions

4.1 Extensibility

WSDL 2.0 provides an open content model, which allows XML elements and
attributes from other (non-WSDL 2.0) XML namespaces to be interspersed in a
WSDL 2.0 document. The qualified name (complete with namespace URI) of the
extension element or attribute acts as an unambiguous name for the semantics
of that extension.

The namespace URI of the extension element should be dereferenceable to a
document that describes the semantics of that extension. As of this writing, there
is no generally accepted standard for what kind of document that should be.

However, the W3C TAG has been discussing the issue (see TAG issue
namespaceDocument-8) and is likely to provide guidance at some point.

4.1.1 Optional Versus Required Extensions

Extensions can either be required or optional.

An optional extension is one that the client may either engage or ignore, entirely
at its discretion, and is signaled by wsdl:required="false" or the absence of the
wsdl:required attribute (because it defaults to false). Thus, a WSDL 2.0
processor, acting on behalf of the client, that encounters an unknown optional
extension can safely ignore it and continue to process the WSDL 2.0 document.
However, it is important to stress that optional extensions are only optional to the
client -- not the service. A service must support all optional and required
extensions that it advertises in its WSDL 2.0 document.

A required extension is one that must be supported and engaged by the client in
order for the interaction to proceed properly, and is signaled by
wsdl:required="true". If a WSDL 2.0 processor, acting on behalf of the client,
encounters a required extension that it does not recognize or does not support,
then it cannot safely continue to process the WSDL 2.0 document. In most
practical cases, this is likely to mean that the processor will require manual
intervention to deal with the extension. For example, a client developer might
manually provide an implementation for the required extension to the WSDL 2.0
processor.

4.2 Defining New MEPs

As we mentioned in 2.4.4.3 Understanding Message Exchange Patterns
(MEPs), even though the 8 MEPs defined by WSDL 2.0 are intended to cover
most of the common use cases, there are situations that require new MEPs to be
defined. In this section, we will explain how new MEPs can be defined to address
special business requirements.

Following the wild success of its reservation service, GreatH discovered that it
could radically increase tourist interest by supplying information on weather
conditions, both to travel agents and to the general touring public. This produced
a challenge for the service implementers: how could this information be supplied
to interested parties without requiring knowledge of web service technology
specifically, and of computers generally? At issue was the desire to provide
asynchronous updates to unsophisticated customers without incurring onerous
overheads for technical support.

The solution adopted was to create a standard mailing list, and to make available
a small cross-platform web service client (actually, a subscriber) that could be
installed on any computer with POP or IMAP access to a mailbox. The mailbox,
once signed up for the mailing list, could either be processed as "dedicated" (to
the GreatH weather service; travel agents did this) or as "general purpose" (in
which case the application would only examine those emails that contained

Subject headers associated with the service). This required development of a
binding to email, which is out of scope for this example, but the resulting WSDL
2.0 was otherwise quite straightforward.

Note: the email binding in use here supports publish/subscribe, by supporting the
robust-out-only MEP as well as the client/server style in-out used for subscribing
and unsubscribing. Details of this binding would require a document as long as
the primer, so play along.

Example 4-1. Weather Notification Service (Initial)
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
 xmlns:tns="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 xmlns:email="http://www.example.com/webservices/email" >

 <types>
 . . .
 </types>

 <interface name="weatherInterface">
 <operation name="opSubscribeWeather"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input element=". . ." />
 <output element=". . ." />
 </operation>
 <operation name="opUnsubscribeWeather"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <output element=". . ." />
 <input element=". . ." />
 </operation>
 <operation name="opNotifyWeather"
 pattern="http://www.w3.org/ns/wsdl/robust-out-
only">
 <output element=". . ." />
 </operation>
 </interface>

 <binding name="weatherMailingListBinding"
 interface="tns:weatherInterface
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.example.com/bindings/email">
 . . .
 </binding>

 <service name="weatherService"
 interface="tns:weatherInterface">
 <endpoint name="greatHWeatherList"
 binding="tns:weatherMailingListBinding"
 address="mailto:weather-owner@greath.example.com"
/>
 </service>

</description>

Note: in the example, the messageLabels of all input and output elements have
been elided, as they are not necessary to disambiguate (but note that the order
of input and output elements is not significant).

Unfortunately, the service was soon highjacked for the purpose of annoyment.
Repeatedly, hotels in less salubrious climes, and the victims of various natural
climactic disasters (hurricanes, tornadoes) found themselves signed up to
receive material full of incomprehensible pointy brackets. They complained to
GreatH, who complained to their service designers.

Applying public key infrastructure to solving the problem was immediately
rejected as too complex and too heavyweight. Analysis showed that the problem
was simply to verify that the address requesting information actually wanted that
information. Consequently, a new message exchange pattern was defined.

4.2.1 Confirmed Challenge

This pattern consists of two or more messages in order as follows:

1. A message:

o indicated by a Message Label component whose message label is
"Request" and direction is "in"

o received from some node N1

2. A message:

o indicated by a Message Label component whose message label is
"Challenge" and direction is "out"

o sent to some node N2 (which may be the same node as N1)

3. An optional message:

o indicated by a Message Label component whose message label is
"Confirmation" and direction is "in"

o received from node N2

4. An optional message:

o indicated by a Message Label component whose message label is
"Response" and direction is "out"

o sent to node N2

This pattern uses the rule Message Triggers Fault.

An operation using this message exchange pattern has a pattern property with
the value "http://www.example.com/webservices/meps/confirmed-challenge".

Once the MEP had been defined (and the email binding specification
appropriately modified to indicate that this was a supported MEP), the service
was redefined and redeployed. Only the changed operations are shown in the
excerpt below.

Example 4-2. Weather Notification Service (Revised)
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
 xmlns:tns="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 xmlns:email="http://www.example.com/webservices/email" >

 . . .

 <interface name="weatherInterface">
 <operation name="opSubscribeWeather"

pattern="http://www.example.com/webservices/meps/confirmed-
challenge">
 <input messageLabel="Request" element=". . ." />
 <output messageLabel="Challenge" element=". . ." />
 <input messageLabel="Confirmation" element=". . ." />
 <output messageLabel="Response" element=". . ." />
 </operation>
 <operation name="opUnsubscribeWeather"

pattern="http://www.example.com/webservices/meps/confirmed-
challenge">
 <output messageLabel="Challenge" element=". . ." />
 <output messageLabel="Response" element=". . ." />
 <input messageLabel="Confirmation" element=". . ." />
 <input messageLabel="Request" element=". . ." />
 </operation>
 . . .
 </interface>

 . . .

</description>

Note: in the second example, the input and output examples are not in the
sequence in which they occur in the pattern; this illustrates that the sequence is
not significant. Note, however, that for this pattern, the messageLabel attribute is
required on every input and output element.

4.3 RPC Style

Section 2.4.4.1 Operation Attributes mentioned that the (optional) style
attribute of an interface operation is used to indicate that the operation conforms
to a particular pre-defined operation style, or set of constraints. Actually, if
desired the style attribute can hold a list of URIs, indicating that the operation
simultaneously conforms to multiple styles.

Operation styles are named using URIs, in order to be unambiguous while still
permitted new styles to be defined without requiring updates to the WSDL 2.0
language. WSDL 2.0 Part 2 [WSDL 2.0 Adjuncts] defines three such operation
styles; one of these is the RPC Style (RPC Style).

The RPC Style is designed to facilitate programming language bindings to WSDL
2.0 constructs. It allows a WSDL 2.0 interface operation to be easily mapped to a

method or function signature, such as a method signature in Java(TM) or C#.
RPC Style is restricted to operations that use the In-Out or In-Only MEPs (see
2.4.4.3 Understanding Message Exchange Patterns (MEPs)).

A WSDL 2.0 document makes use of the RPC Style in an interface operation by
first defining the operation in conformance with all of the RPC Style rules, and
then setting that operation's style attribute to include the URI that identifies the
RPC Style, thus asserting that the operation does indeed conform to the RPC
Style. These rules permit the input and output message schemas to map
conveniently to inputs and outputs of a method signature. Roughly, input
elements map to input parameters, output elements map to output parameters,
and elements that appear both in the input and output message schemas map to
input/output parameters. WSDL 2.0 Part 2 section "RPC Style" provides full
details of the mapping rules and requirements.

The RPC Style also permits the full signature of the intended mapping to be
indicated explicitly, using the wrpc:signature attribute defined in WSDL 2.0 Part
2 section "wrpc:signature Extension". This is an (optional) extension to the WSDL
2.0 language whose value designates how input and output message schema
elements map to input and output parameters in the method signature.

The example below illustrates how RPC Style may be used to designate a
signature. This example is a modified version of the GreatH reservation service.
In particular, the interface and types sections have been modified to specify
and conform to the RPC Style.

Example 4-3. Specifying RPC Style
. . .
<types>

 <xs:element name="checkAvailability">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="checkInDate" type="xs:date"/>
 <xs:element name="checkOutDate" type="xs:date"/>
 <xs:element name="roomType" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="checkAvailabilityResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="roomType" type="xs:string"/>
 <xs:element name="rateType" type="xs:string"/>
 <xs:element name="rate" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 . . .
</types>

<interface name = "reservationInterface" >

 <operation name="checkAvailability"
 pattern="http://www.w3.org/ns/wsdl/in-out"
 style="http://www.w3.org/ns/wsdl/rpc"
 wrpc:signature=
 "checkInDate #in checkOutDate #in roomType #inout rateType
#out rate #return">
 <input messageLabel="In"
 element="tns:checkAvailability" />
 <output messageLabel="Out"
 element="tns:checkAvailabilityResponse" />

 </operation>
. . .
</interface>
. . .

Note that the interface operation's name "checkAvailability", is the same as the
localPart of the input element's QName, "tns:checkAvailability". This is one of
the requirements of the RPC Style. The name of the operation is used as the
name of the method in a language binding, subject to further mapping restrictions
specific to the target programming language. In this case, the name of the
method would be "checkAvailability".

The local children elements of the input element and output element designate
the parameters and the return type for a method call. Note that the elements
checkInDate, checkOutDate are input parameters, however the element roomType
is an in-out parameter, as it appears both as a local element child of both input
and output elements. This indicates that the reservation system may change the
room type requested based on availability.

The reservation service also returns a rate type for the reservation, such as "rack
rate". The return value for the method is designated as the "rate" element.

Based on the value of the wrpc:signature attribute, the method signature would
be obtained following the order of the parameters. A sample mapping is provided
below for the Java(TM) language. This example was created using JAX RPC 1.1
[JAX RPC 1.1] for mapping simple types to Java types and designated inout and
output parameters by using Holder classes.

Example 4-4. Sample Java(TM) Signature for RPC Style
public interface reservationInterface extends Remote{

 double checkAvailability(java.util.calendar checkInDate,
 java.util.calendar checkOutDate,
 StringHolder roomType,
 StringHolder rateType) throws RemoteException;
 . . .
}

Programming languages may further specify how faults are mapped to language
constructs and their scopes, such as Exceptions, but they are not specific to RPC
style.

5. Advanced Topics III: Miscellaneous

This section covers various topics that may fall outside the scope of WSDL 2.0,
but shall provide useful background and best practice guidances that may be
useful when authoring a WSDL 2.0 document or implementing the WSDL 2.0
specification.

5.1 Enabling Easy Message Dispatch

It is desirable for a message recipient to have the capability to uniquely identify a
message type in order to handle it correctly. The capability of identifying a
message type is typically used for dispatching purposes within an implementation
of a web service. Therefore, WSDL authors are recommended to consider how to
disambiguate message types when they develop their services.

The context in which a Web service may be deployed plays an important role in
choosing an appropriate way to disambiguate and identify message types. In a
typical deployment, an endpoint address may host a single service that is
described by a WSDL service element. In this case, when XSD is used,
assigning unique qualified names of global element declarations as inputs within
the interface that describes the service would be sufficient to disambiguate the
types of the messages that are received. However, when endpoint address hosts
multiple services, in essence supporting several WSDL descriptions, the desire
to disambiguate message types should be considered within the context of all the
deployed services, not only within a single interface.

As explained in 2.4.4.1 Operation Attributes, when XSD is used as the type
system, a few special tokens can be used for the element attributes. Uniquely
identifying a message type may become very difficult when:

 any of these input elements within an interface has a value of "#any"; or

 more than one of these input elements (see below) has a value of
"#none"; or

 the qualified names of the global element declarations that are specified
as input elements are NOT unique when considered together.

If any of the three cases above arise, disambiguation mechanisms may be
provided by means of an extension element (i.e., an element that is not in the
http://www.w3.org/ns/wsdl namespace), having a wsdl:required attribute with a
value of "true". The semantics of such an extension element would indicate the
mechanism for unambiguously identifing the mechanism that a message sender
is required to support in order to enable the message recipient to unambiguously
determine the message received.

For example, the WS-Addressing [WS-Addressing] specification provides such a
disambiguation mechanism. It consists of an extension element which may be
marked as required, and defines a required [action] property whose value is
always present in a conformant message delivery. The value of the action
property can be used to disambiguate the message by the receiver and there is a
well defined way to associate actions to messages in WS-Addressing

specifications. Further, WS-Addressing also provides an appropriate default
action value that identifies each message type uniquely.

When using the HTTP Binding, or when using the SOAP Binding with the SOAP
Response MEP, there is no SOAP envelope in a request message, and thus
mechanisms other than unique qualified names of global element declarations, or
headers such as wsa:Action, must be considered. In these cases, the {address}
and {http location} properties may be constructed so as to provide a location that
can be correlated uniquely with an operation. For instance, one could prefix the
{http location} property with the operation name, or one could ensure that the
portion of the {http location} preceding the first unescaped "{" character be
unique per operation.

5.2 Web Service Versioning

A WSDL 2.0 document describes a set of messages that a Web service may
send and receive. In essence, it describes a language for interacting with that
service. However it is possible for a Web service to exchange other messages
beyond those described in a particular WSDL 2.0 document. Often this
circumstance occurs following an evolution of the client and/or service, and thus
an evolution of the interaction language.

How best to manage the evolution (versioning) of Web based systems is, at the
time of writing, the subject of a wide-ranging debate. However, there are three
activities within the W3C that are directly relevant to versioning of Web services
description:

 The Technical Architecture Group (TAG) has published guidance on the
extensibility and versioning of data formats in its Web Architecture
document [Web Architecture]. There is also a more wide ranging draft
finding on Versioning and Extensibility [W3C TAG Finding: Extending and
Versioning Languages Part 1]. Both of these works build upon the
technical note on Web Architecture: Extensible Languages [WebArch:
Extensible Languages].

 The XML Schema Working Group is collecting a series of use cases for
schema versioning as a part of the Schema 1.1 activity. See XML Schema
Versioning Use Cases [XML Schema: Versioning Use-Cases].

 The Guide to Versioning XML Languages using XML Schema 1.1 [Guide
to Versioning XML Languages using XML Schema 1.1] illustrates some
techniques for versioning XML languages enabled by features of XML
Schema 1.1 [XML Schema 1.1].

 The Semantic Web Best Practices and Deployments Working Group is
examining how vocabularies may evolve. See [SW
VocabManagementNote]

While incomplete, these activities all agree in one important respect: that
versioning is difficult, but you should anticipate and plan for change.

The draft finding on Versioning and Extensibility details two key approaches to
versioning:

 compatible evolution; and

 big bang.

5.2.1 Compatible Evolution

In compatible evolution, designers are expected to limit changes to those that are
either backward or forward compatible, or both:

Backward compatible

The receiver behaves correctly if it receives a message in an older version
of the interaction language.

Forward compatible

The receiver behaves correctly if it receives a message in a newer version
of the interaction language.

Since Web services and their clients both send and receive messages, these
concepts can apply to both parties. However, since WSDL 2.0 is service-centric,
we will focus on the case of service evolution.

There are three critical areas in which a service described in WSDL 2.0 my
evolve:

 The service now also supports additional binding. In compatible evolution,
this should be a safe addition, given that adding a new binding should not
impact any existing interactions using another transport.

 An interface supports new operations. Again, in compatible evolution this
is usually safe, given that adding an additional operation to an abstract
interface should not impact any existing interactions.

 The message bodies may include additional data. How the message
contents may change within a description depends to a large extent upon
the type system being used to describe the message contents. RelaxNG
[RELAX NG] has good support for describing vocabularies that ignore
unknown XML, as does OWL/RDF. XML Schema 1.0 has limited support
for extending the description of a message via the xs:any and
xs:anyAttribute constructs. XML Schema 1.1 has been chartered to
provide "changes necessary to provide better support for versioning of
schemas", and it is anticipated that this may include improved support for
more "open content" and therefore better support for compatible evolution
of messages.

 The protocol used to exchange messages may provide mechanisms for
exchanging data outside of the message body. In the case of SOAP, the
WSDL 2.0 binding provides the ability to describe application data to be
exchanged as headers. The SOAP processing model has a very good
extensibility model with unknown headers being ignored by a receiver by
default. There is also a mechanism whereby headers which are required

as a part of an incompatible change may be marked with a
'mustUnderstand' flag. Passing additional items as headers may be the
only way to compatibly evolve messages with fixed bodies.

5.2.2 Big Bang

The big bang approach to versioning is the simplest to currently represent in
WSDL 2.0. In this approach, any change to a WSDL 2.0 document implies a
change to the document's namespace, a change to the interface implies a new
interface namespace and a change to the message contents is communicated
using a new message namespace. This approach has particular benefits where
an agent may quickly tell if a service has changed by simply comparing the
namespace value.

5.2.3 Evolving a Service

Compatible changes are far more easily managed than incompatible ones:

 With a compatible change the service need only support the latest version
of a service. A client may continue to use a service adjusting to new
version of the interface description at a time of its choosing.

 With an incompatible change, the client receives a new version of the
interface description and is expected to adjust to the new interface before
old interface is terminated. Either the service will need to continue to
support both versions of the interface during the hand over period, or the
service and the clients are coordinated to change at the same time. An
alternative is for the client to continue until it encounters an error, at which
point it uses the new version of the interface.

5.2.4 Combined Approaches

It is feasible to combine the "compatible evolution" and "big bang" approaches in
a variety of different ways. For example, the namespace could be changed when
message descriptions are changed, but the namespace could stay the same
when new operations are added.

While the big bang approach is currently the easiest to implement in WSDL 2.0, it
can lead to a large number of cloned interfaces that become difficult to manage,
thus making the compatible approach preferable to many for widely distributed
systems. In the end, the choice of a versioning strategy for Web services
described in WSDL 2.0 is left as an exercise to the reader.

5.2.5 Examples of Versioning and Extending a Service

5.2.5.1 Additional Optional Elements Added in Content

The following example demonstrates how content may be extended with
additional content. The reservation service is changed to a newer version that

can accept an optional number of guests parameter. The service provider wants
existing clients to continue to be able to use the service. The author adds the
element into the schema as an optional element.

Example 5-1. XML Schema with Optional Elements
<xs:complexType name="tCheckAvailability">
 <xs:sequence>
 <xs:element name="checkInDate" type="xs:date"/>
 <xs:element name="checkOutDate" type="xs:date"/>
 <xs:element name="roomType" type="xs:string"/>
 <xs:element name="numberOfGuests" type="xs:integer"
minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"/>
 </xs:sequence>
</xs:complexType>

The author has the choice of keeping the same namespace or using a different
namespace for the additional content and the existing content. In this scenario, it
is a compatible change and the author decides to keep the same namespace.
This allows existing clients to interact with a new service, and it allows newer
clients to interact with older services.

5.2.5.2 Additional Optional Elements Added to a Header

Another option is to add the extension as a header block. This is accomplished
by defining an element for the extension and adding a header element that
references the element into the binding operation as child of the input.

Example 5-2. Additional optional elements added to a SOAP header
<xs:element name="NumberOfGuests" type="tNumberOfGuests"/>
<xs:complexType name="tNumberOfGuests">
 <xs:sequence>
 <xs:element name="numberOfGuests" type="xs:integer"
minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="tns:opCheckAvailability">
 <input>
 <wsoap:header element="tns:NumberOfGuests"/>
 </input>
 </operation>
...
</binding>

It is also possible for the header to be marked with soap:mustUnderstand set to
true. The HTTP Binding has similar functionality though without a
mustUnderstand attribute.

5.2.5.3 Additional Mandatory Elements in Content

This following example demonstrates an extension with additional content. The
reservation service requires a number of guests parameter. The service provider
wants existing clients to be unable to use the service. The author adds the
element into the schema as a mandatory element.

Example 5-3. Additional Mandatory Elements in Content
<xs:complexType name="tCheckAvailabilityV2">
 <xs:sequence>
 <xs:element name="checkInDate" type="xs:date"/>
 <xs:element name="checkOutDate" type="xs:date"/>
 <xs:element name="roomType" type="xs:string"/>
 <xs:element name="numberOfGuests" type="xs:integer"/>
 <xs:any namespace="##other" processContents="lax"/>
 </xs:sequence>
</xs:complexType>

The author has the choice of keeping the same namespace or using a different
namespace for the additional content and the existing content. In this scenario, it
is an incompatible change and the author decides to use a new name but the
same namespace. This type is then used in the interface operation, and then
binding and service endpoints.

5.2.5.4 Additional Optional Operation Added to Interface

Section 2.4.2 Interface Inheritance shows another type of versioning or
extension, where the reservationInterface extends the MessageLogInterface. By
definition of interface inheritance, a client that understands just the
MessageLogInterface will continue to work with the reservationInterface, that it is
backwards compatible.

5.2.5.5 Additional Mandatory Operation Added to Interface

Often mandatory operations are added to an interface. The Hotel service decides
to add an operation to the reservation service which is a confirmation. The Hotel
service requires that all clients upgrade to the new interface to use the service.
They have a variety of options for indicating that the old interface is deprecated.

By the definition of interface inheritance, they cannot use interface inheritance for
defining the extension.

Example 5-4. Additional Mandatory Operation Added to the Interface
<interface name="reservationWithConfirmation"
extends="cc:creditCardFaults">
 ...
 <operation name="makeReservation">
 <input messageLabel="In" element="ghns:makeReservation" />
 <output messageLabel="Out"
element="ghns:makeReservationResponse" />
 <outfault ref="invalidDataFault" messageLabel="Out" />

 <outfault ref="cc:cancelledCreditCard" messageLabel="Out" />
 <outfault ref="cc:expiredCreditCard" messageLabel="Out" />
 <outfault ref="cc:invalidCreditCardNumber" messageLabel="Out"
/>
 <outfault ref="cc:invalidExpirationDate" messageLabel="Out"
/>
 </operation>
 <operation name="confirmReservation">
 <input messageLabel="In"
element="ghns:makeReservationResponse" />
 <output messageLabel="Out"
element="ghns:confirmReservationResponse" />
 <outfault ref="expiredReservation" messageLabel="Out" />
 </operation>
</interface>

This interface cannot be bound and deployed at the existing URI and indicate
incompatibility, as the service will still accept the makeReservation request.
Changing the name of the interface from reservation to
reservationWithConfirmation or changing the name of the operation from
makeReservation to makeReservationV2 does not affect the messages that are
exchanged. Thus it can't be used as a mechanism for indicating incompatibility.
To indicate incompatibility, a change must be made to something that appears in
the message. For a SOAP over HTTP request, the list is roughly the URI, the
SOAP Action HTTP Header, or the Message content.

5.2.5.6 Indicating Incompatibility by Changing the Endpoint URI

To indicate incompatibility, the URI of the Hotel Endpoint can be changed and
messages send to the old Endpoint return a Fault.

5.2.5.7 Indicating Incompatibility by Changing the SOAP Action

The SOAP Action can be set for the makeReservation request, and making it
different than the earlier version should indicate incompatibility.

Example 5-5. Indicating Incompatibility by changing the SOAP Action
<binding name="reservationSOAPBinding"
 interface="tns:reservationInterface"
 type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">
 <operation ref="tns:makeReservation"
 wsoap:action="tns:makeReservationV2"/>
 . . .

Note that this mechanism is applicable on a per-binding basis. The SOAP HTTP
Binding provides for setting Action, but other bindings may not provide such a
facility.

5.2.5.8 Indicating Incompatibility by Changing the Element Content

The namespace or name of the makeReservation element can be changed, and
then the interface and bindings changed. To indicate incompatibility, requests
using the old makeReservation QName should probably return a fault. The new
interface, with a changed makeReservation, is:

Example 5-6. Indicating incompatibility by changing the element content
<xs:element name="ghns2:makeReservation"
type="ghns:tmakeReservation"/>

<interface . . .>

 <operation name="makeReservation">

 <input messageLabel="In" element="ghns2:makeReservation" />

</interface>

The binding and service endpoints require no change.

Finally, the service could also provide an interface for ghns:makeReservation
that only returns a fault.

5.3 Describing Web Service Messages That Refer to Other
Web Services

Hyperlinking is one of the defining characteristics of the Web. The ability to
navigate from one Web page to another is extremely useful. It is therefore natural
to apply this capability to Web services. This section describes references to
endpoints and services, which are the Web service analogs of document
hyperlinks.

A reference to an endpoint is an element or attribute that contains the address of
a Web service endpoint. A reference to a service is an element or attribute that
contains one or more references to the endpoints of a service. If the interface or
binding that the service or endpoint implements is known at description time, it
may be useful to add this information to the WSDL 2.0 document that describes
the Web service. This is accomplished by using the wsdlx:interface or
wsdlx:binding attribute to annotate the XML Schema component that defines the
message.

One may wonder, from a Web architectural point of view, why anything more
than a URI would be needed to reference a Web service. Indeed, a reference to
a service does make use of one or more URIs to indicate the endpoint addresses
of a service. However, it may also include additional metadata about that service,
such as the WSDL 2.0 interface and binding that the service supports.

References to services and endpoints will be illustrated by expanding the GreatH
example already discussed.

5.3.1 The Reservation Details Web Service

When designing a Web application it is natural to give each important concept a
URI. In the GreatH hotel reservation system, the important concepts are
reservations, so we begin our design by assigning a URI to each reservation.
Since each reservation has a unique confirmation number, e.g OMX736, we
create a URI for each reservation by appending the confirmation number to a
base URI, e.g. http://greath.example.com/2004/reservation/OMX736. This URI
will be the endpoint address for a Reservation Details Web service that can
retrieve and update the state of a reservation. Example 5-7 shows the format of
the reservation detail.

Example 5-7. Detail for Reservation OMX736
<?xml version="1.0" encoding="UTF-8"?>
<reservationDetails

xmlns="http://greath.example.com/2004/schemas/reservationDetails">

 <confirmationNumber>OMX736</confirmationNumber>
 <checkInDate>2005-06-01</checkInDate>
 <checkOutDate>2005-06-03</checkOutDate>
 <roomType>single</roomType>
 <smoking>false</smoking>

</reservationDetails>

The Reservation Details Web service provides operations for retrieving and
updating the detail for a reservation. Example 5-8 shows the description for this
Web service. Note that there is no service element in this description since the
set of reservations is dynamic. Instead, the endpoints for the reservations will be
returned by querying the Reservation List Web service.

Example 5-8. The Reservation Details Web Service Description:
reservationDetails.wsdl
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/reservationD
etails"

xmlns:tns="http://greath.example.com/2004/services/reservationDetails
"

xmlns:wdetails="http://greath.example.com/2004/schemas/reservationDet
ails"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 This document describes the GreatH Reservation
Details Web
 services. Use these services to retrieve or update
reservation
 details. Each reservation has its own service and
endpoint. To

 obtain the reference for a reservation service, make
a request to
 the GreatH Reservation List Web service. See
 reservationList.wsdl for a description of the
Reservation List
 Web service.
 </documentation>

 <types>
 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationDetails"
 schemaLocation="reservationDetails.xsd" />
 </types>

 <interface name="reservationDetailsInterface">

 <operation name="retrieve"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In" element="#none" />
 <output messageLabel="Out"
 element="wdetails:reservationDetails"
/>
 </operation>

 <operation name="update"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
 element="wdetails:reservationDetails"
/>
 <output messageLabel="Out"
 element="wdetails:reservationDetails"
/>
 </operation>

 </interface>

 <binding name="reservationDetailsSOAPBinding"
 interface="tns:reservationDetailsInterface"
 type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="tns:retrieve"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 <operation ref="tns:update"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 </binding>

</description>

Example 5-9 shows the XML schema elements that are used in this Web service.

Example 5-9. The Reservation Details Web Service XML Schema:
reservationDetails.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://greath.example.com/2004/schemas/reservationDe
tails"

xmlns:tns="http://greath.example.com/2004/schemas/reservationDetails"

xmlns:wdetails="http://greath.example.com/2004/services/reservationDe
tails"
 xmlns:wsdli="http://www.w3.org/ns/wsdl-instance"
 xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions"

wsdli:wsdlLocation="http://greath.example.com/2004/services/reservati
onDetails reservationDetails.wsdl">

 <element name="confirmationNumber" type="string" />

 <element name="checkInDate" type="date" />

 <element name="checkOutDate" type="date" />

 <element name="reservationDetails">
 <complexType>
 <sequence>
 <element ref="tns:confirmationNumber"
/>
 <element ref="tns:checkInDate" />
 <element ref="tns:checkOutDate" />
 <element name="roomType"
type="string" />
 <element name="smoking"
type="boolean" />
 </sequence>
 </complexType>
 </element>

 <simpleType name="reservationDetailsSOAPEndpointType"
wsdlx:binding="wdetails:reservationDetailsSOAPBinding">
 <restriction base="anyURI"/>
 </simpleType>

 <element name="reservationDetailsSOAPEndpoint"
type="tns:reservationDetailsSOAPEndpointType" />

 <element name="reservationDetailsService">
 <annotation>
 <documentation>
 This element contains references to
the Reservation
 Details Web Service endpoints for
this reservation.
 </documentation>

 </annotation>
 <complexType>
 <sequence>
 <element name="soap"
type="tns:reservationDetailsSOAPEndpointType"/>
 <element name="secure-soap"
type="tns:reservationDetailsSOAPEndpointType"/>
 </sequence>
 </complexType>
 </element>

</schema>

This XML schema contains the usual definitions for the elements that appear in
the messages of the Web service. For example, the reservationDetails element
is used in the messages of the retrieve and update operations. In addition, the
schema defines the simple type reservationDetailsSOAPEndpointType which is
based on xs:anyURI and has the annotation wsdlx:binding =
"wdetails:reservationDetailsSOAPBinding" which means that the URI is the
address of a Reservation Details Web service endpoint that implements the
wdetails:reservationDetailsSOAPBinding binding. Note that the
wsdli:wsdlLocation attribute is used to define the location of the WSDL 2.0
document that defines the wdetails:reservationDetailsSOAPBinding binding.
This annotated simple type is used to define the
reservationDetailsSOAPEndpoint element which will be used in the Reservation
List service.

5.3.2 The Reservation List Web Service

Since the set of reservations changes as reservations are made and cancelled,
the Reservation Detail endpoints are not described in a fixed WSDL 2.0
document. Instead they are returned as references to endpoints in response to
requests made on a Reservation List Web service. The endpoint address for the
Reservation List service will be http://greath.example.com/2004/reservationList.

Example 5-10 shows the format of the response from the Reservation List
service.

Example 5-10. Response from the Reservation List Web Service
<?xml version="1.0" encoding="UTF-8"?>
<reservationList

xmlns="http://greath.example.com/2004/schemas/reservationList"

xmlns:details="http://greath.example.com/2004/schemas/reservationDeta
ils">

 <reservation>

<details:confirmationNumber>HSG635</details:confirmationNumber>
 <details:checkInDate>2005-06-27</details:checkInDate>
 <details:checkOutDate>2005-06-
28</details:checkOutDate>

 <details:reservationDetailsSOAPEndpoint>

http://greath.example.com/2004/reservation/HSG635
 </details:reservationDetailsSOAPEndpoint>
 </reservation>

 <reservation>

<details:confirmationNumber>OMX736</details:confirmationNumber>
 <details:checkInDate>2005-06-01</details:checkInDate>
 <details:checkOutDate>2005-06-
03</details:checkOutDate>
 <details:reservationDetailsSOAPEndpoint>

http://greath.example.com/2004/reservation/OMX736
 </details:reservationDetailsSOAPEndpoint>
 </reservation>

 <reservation>

<details:confirmationNumber>WUH663</details:confirmationNumber>
 <details:checkInDate>2005-06-11</details:checkInDate>
 <details:checkOutDate>2005-06-
15</details:checkOutDate>
 <details:reservationDetailsSOAPEndpoint>

http://greath.example.com/2004/reservation/WUH663
 </details:reservationDetailsSOAPEndpoint>
 </reservation>

</reservationList>

Here, the <details:reservationDetailsSOAPEndpoint> elements contain
references to the Reservation Details Web service endpoints for the reservations
HSG635, OMX736, and WUH663.

Example 5-11 shows the description of the Reservation List Web service. Note
that it contains operations to retrieve the entire list and to query for a list of
reservations by confirmation number, check-in date, and check-out date. In each
case, the operation returns a list of reservations.

Example 5-11. The Reservation List Web Service Description:
reservationList.wsdl
<?xml version="1.0" encoding="utf-8" ?>
<description
 xmlns="http://www.w3.org/ns/wsdl"

targetNamespace="http://greath.example.com/2004/services/reservationL
ist"

xmlns:tns="http://greath.example.com/2004/services/reservationList"

xmlns:details="http://greath.example.com/2004/schemas/reservationDeta
ils"

xmlns:list="http://greath.example.com/2004/schemas/reservationList"

 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <documentation>
 This document describes the GreatH Reservation List
Web
 services. Use this service to retrieve lists of
reservations
 based on a variety of search criteria.
 </documentation>

 <types>
 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationDetails"
 schemaLocation="reservationDetails.xsd" />
 <xs:import

namespace="http://greath.example.com/2004/schemas/reservationList"
 schemaLocation="reservationList.xsd" />
 </types>

 <interface name="reservationListInterface">

 <operation name="retrieve"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In" element="#none" />
 <output messageLabel="Out"
element="list:reservationList" />
 </operation>

 <operation name="retrieveByConfirmationNumber"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
 element="details:confirmationNumber"
/>
 <output messageLabel="Out"
element="list:reservationList" />
 </operation>

 <operation name="retrieveByCheckInDate"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
element="details:checkInDate" />
 <output messageLabel="Out"
element="list:reservationList" />
 </operation>

 <operation name="retrieveByCheckOutDate"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
element="details:checkOutDate" />
 <output messageLabel="Out"
element="list:reservationList" />
 </operation>

 </interface>

 <binding name="reservationListSOAPBinding"
 interface="tns:reservationListInterface"
 type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="tns:retrieve"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 <operation ref="tns:retrieveByConfirmationNumber"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 <operation ref="tns:retrieveByCheckInDate"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 <operation ref="tns:retrieveByCheckOutDate"

wsoap:mep="http://www.w3.org/2003/05/soap/mep/request-response" />

 </binding>

 <service name="reservationListService"
 interface="tns:reservationListInterface">

 <endpoint name="reservationListEndpoint"
 binding="tns:reservationListSOAPBinding"

address="http://greath.example.com/2004/reservationList" />

 </service>

</description>

Example 5-12 shows the schema for the messages used in the Reservation List
Web service.

Example 5-12. The Reservation List Schema: reservationList.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://greath.example.com/2004/schemas/reservationLi
st"

xmlns:tns="http://greath.example.com/2004/schemas/reservationList"

xmlns:details="http://greath.example.com/2004/schemas/reservationDeta
ils"
 xmlns:wsdli="http://www.w3.org/ns/wsdl-instance">

 <import
 namespace="http://www.w3.org/ns/wsdl-instance" />

 <import

namespace="http://greath.example.com/2004/schemas/reservationDetails"
 schemaLocation="reservationDetails.xsd" />

 <element name="reservation">
 <annotation>
 <documentation>
 A reservation contains the
confirmation number, check-in
 and check-out dates, and a reference
to a Reservation
 Details Web service.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element
ref="details:confirmationNumber" />
 <element ref="details:checkInDate" />
 <element ref="details:checkOutDate"
/>
 <element
ref="details:reservationDetailsSOAPEndpoint" />
 </sequence>
 </complexType>
 </element>

 <element name="reservationList">
 <annotation>
 <documentation>
 A reservation list contains a
sequence of zero or more
 reservations.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="tns:reservation"
minOccurs="0"
 maxOccurs="unbounded">
 </element>
 </sequence>
 <attribute ref="wsdli:wsdlLocation" />
 </complexType>
 </element>

</schema>

In the preceding example, there was a single endpoint associated with each
Reservation Detail Web service. Suppose GreatH hotel decided to provide a
second, secure endpoint. In this case, references to services would be used to
collect together the endpoints for each reservation. The reservationDetails.xsd
schema defines the reservationDetailsService element for this purpose. It
contains the nested elements soap and secure-soap which are each of type

reservationDetailsSOAPEndpointType and therefore contain the address of an
endpoint that implements the wdetails:reservationDetailsSOAPBinding binding.

Example 5-13 shows an example of a message that contains a reference to the
service for reservation HGS635. Note that the service contains two endpoints,
one of which provides secure access to the Reservation Details Web service.

Example 5-13. A Reference to the Reservation Details Web Service
<?xml version="1.0" encoding="UTF-8"?>
<details:reservationDetailsService

xmlns:details="http://greath.example.com/2004/schemas/reservationDeta
ils"

 <details:soap>
 http://greath.example.com/2004/reservation/HSG635
 </details:soap>

 <details:secure-soap>
 https://greath.example.com/2004/reservation/HSG635
 </details:secure-soap>

</details:reservationDetailsService>

5.3.3 Reservation Details Web Service Using HTTP Transfer

This section presents a variation on the example in 5.3.1 The Reservation
Details Web Service . It illustrates the use of HTTP transfer operations, GET
and PUT, to retrieve and update GreatH hotel reservation details using the
Representational State Transfer (REST) architectural style described by Roy
Fielding [REST] . REST is a distillation of the architectural properties that Dr.
Fielding identified as being vital to the Web's robustness and enormous
scalability.

Since each reservation in our example will have a distinct URI, the Reservation
Details Web service can be offered using HTTP GET and HTTP PUT. The
binding would be modified as follows:

Example 5-14. Reservation Details Web Service Using HTTP Transfer
. . .
<binding name="reservationDetailsHTTPBinding"
 type="http://www.w3.org/ns/wsdl/http"
 interface="tns:reservationDetailsInterface" >

 <operation ref="tns:retrieve"
 whttp:method="GET" />

 <operation ref="tns:update"
 whttp:method="PUT" />

</binding>
. . .

As with the example in 5.3.1 The Reservation Details Web Service , service
and endpoint elements are not provided because the Reservation List Web
service provides the endpoints.

5.3.4 Reservation List Web Service Using HTTP GET

This section continues the REST-style example of 5.3.3 Reservation Details
Web Service Using HTTP Transfer by modifying the example of 5.3.2 The
Reservation List Web Service to use HTTP GET.

The SOAP version of the Reservation List Web service above offers four different
search operations. These can also be expressed as various parameters in a URI
used by HTTP GET:

Example 5-15. Reservation List Web Service Using HTTP GET
. . .
<binding name="reservationListHTTPBinding"
 type="http://www.w3.org/ns/wsdl/http"
 interface="tns:reservationListInterface"
 whttp:methodDefault="GET">

 <operation ref="tns:retrieve"
 whttp:location="" />

 <operation ref="tns:retrieveByConfirmationNumber"

whttp:location="reservationList/ConfirmationNumber/{confirmationNumbe
r/}" />

 <operation ref="tns:retrieveByCheckInDate"
 whttp:location="reservationList/CheckInDate/{checkInDate/}" />

 <operation ref="tns:retrieveByCheckOutDate"
 whttp:location="reservationList/CheckOutDate/{checkOutDate/}"
/>
</binding>
. . .
<service . . . >

 <endpoint name="reservationListEndpoint"
 binding="tns:reservationListHTTPBinding"
 address="http://greath.example.com/2004/reservationList" />
. . .
</service>
. . .

A retrieval by Confirmation Number URI would look like:
http://greath.example.com/2004/reservationList/ConfirmationNumber/HSG63
5 .

Alternatively, a single query type may be provided. This query type is a sequence
of optional items. Any items in the sequence are serialized into the URI query
string. A query sequence for any of ConfirmationNumber, checkInDate,
checkOutDate would look like this:

Example 5-16. Query Sequence Using a Single Query Type

<element name="reservationQuery">
 <annotation>
 <documentation>
 A reservation contains the confirmation number, check-in
 and check-out dates, and a reference to a Reservation
 Details Web service.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element ref="details:confirmationNumber" minOccurs="0"/>
 <element ref="details:checkInDate" minOccurs="0"/>/>
 <element ref="details:checkOutDate" minOccurs="0"/>/>
 </sequence>
 </sequence>
 </complexType>
</element>

The WSDL 2.0 service that offers this type serialized as a parameter would look
like this:

Example 5-17. WSDL 2.0 for Using a Single Query Type
. . .
<interface name="reservationListInterfaceWithQuery">

 <operation name="retrieveByReservationQuery"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <input messageLabel="In"
 element="details:ReservationQuery" />
 <output messageLabel="Out"
 element="list:reservationList" />
 </operation>

</interface>

<binding name="reservationListQueryHTTPBinding"
 type="http://www.w3.org/ns/wsdl/http"
 interface="tns:reservationListInterfaceWithQuery"
 whttp:methodDefault="GET">

 <operation ref="tns:retrieveByReservationQuery"
 whttp:location="reservationList/{ReservationQuery}}" />

</binding>

. . .
 <endpoint name="reservationListEndpoint"
 binding="tns:reservationListHTTPBinding"
 address="http://greath.example.com/2004/reservationList" />
. . .

Various URIs would be:
http://greath.example.com/2004/reservationList/ReservationQuery?confirm
ationNumber=HSG635
http://greath.example.com/2004/reservationList/ReservationQuery?checkIn

Date=06-06-05 .

It is important to observe that using the URI serialization can result in very
flexible queries and few operations. The previous discrete SOAP operations are
collapsed into one "parameterized" operation.

5.4 Multiple Interfaces for the Same Service

Suppose a Web service wishes to expose two different interfaces: a customer
interface for its regular users, and a management interface for its operator. A
wsdl:service specifies only one wsdl:interface, so to achieve the desired effect
the service provider would somehow need to indicate a relationship between two
services. How can a service provider indicate a relationship between services?
Potential strategies include:

 Declare both interfaces in the same wsdl:description element.
Although WSDL 2.0 does not ascribe any particular significance to the fact
that two wsdl:services are declared within the same wsdl:description, an
application or toolkit could interpret this to mean that they are related in
some way.

 Declare both interfaces in the same wsdl:targetNamespace. Again,
although WSDL 2.0 does not ascribe any particular significance to the fact
that two wsdl:services are declared within the same
wsdl:targetNamespace, an application or toolkit could interpret this to
mean that they are related in some way.

 Add an extension to WSDL 2.0 that links together all services that are
related in this way. WSDL 2.0's open content model permits extension
elements from other namespaces to appear in a WSDL 2.0 document.

 Declare them in completely separate WSDL 2.0 documents, but use
the same endpoint address for both. I.e., declare a wsdl:interface and
wsdl:service for the customer interface in one WSDL 2.0 document, and
a wsdl:interface and wsdl:service for the management interface in a
different WSDL 2.0 document, but use the same endpoint address for
both. (By "different WSDL 2.0 document" we mean that both documents
are never included or imported into the same WSDL 2.0 descriptions
component.) Although this approach may work in some circumstances, it
means that the same endpoint address would be used for two different
purposes, which is apt to cause confusion or ambiguity. Furthermore, it is
contrary to the Web architectural principle that different URIs should be
used to identify different Web resources. (See the Web Architecture [Web
Architecture] section on URI collision.)

 Use inheritance to combine the customer interface and management
interface into a single, larger wsdl:interface. Of course, this reduces
modularity and means that the management interface becomes exposed
to the customers, which is not good.

Bear in mind that since the above strategies step outside of the WSDL 2.0
language specifies (and are therefore neither endorsed nor forbidden by the

WSDL 2.0 specification) the WSDL 2.0 specification cannot define or standardize
their semantics.

The desire to express relationships between services is also relevant to Web
service versioning, discussed next.

5.5 Mapping to RDF and Semantic Web

WSDL 2.0 is a language designed primarily with XML syntax. While XML is
almost universally understood, it has several issues:

 The ability to compose two XML documents into one depends on the
languages of those documents. WSDL 2.0 does not permit Web service
descriptions in different targetNamespaces to be merged into a single
(physical) XML document.

 The ability to extend XML languages with other XML languages depends
on the languages again. WSDL 2.0 is extremely extensible, but the
meaning of every single extension in WSDL 2.0 must be defined explicitly.
Putting a piece of XMI (XML format for UML) into a WSDL 2.0 document
may have different meaning from putting it into an XHTML document.
Therefore XML-based extensibility has very high cost if many languages
are involved.

 Similarly, extending another XML language with pieces of WSDL 2.0,
while possible, has to be defined for all the possible destinations. Putting a
WSDL 2.0 interface element into a UDDI registry may mean a different
thing from putting that interface element into an XHTML document.

 Finally, the meaning of a portion of a WSDL 2.0 document is not defined
by the WSDL 2.0 specification. While an interface element could form a
single XML document, it is not a WSDL 2.0 document, so its meaning is
largely undefined.

Applications that require such levels of composability (or decomposability) are
increasingly being based on RDF [RDF], a graph-based knowledge
representation language, and Web Ontology Language (OWL) [OWL], which can
be thought of as an advanced schema language for RDF. Effectively, a WSDL
2.0 document represented in RDF can be more easily extended with arbitrary
RDF assertions and the WSDL 2.0 information can be more easily associated
with arbitrary other knowledge.

5.5.1 RDF Representation of WSDL 2.0

WSDL 2.0: Mapping to RDF [WSDL 2.0 RDF Mapping] describes how WSDL 2.0
constructs can be expressed in RDF using classes of resources (described with
an ontology expressed in OWL) and assertions over individual resources. As
RDF represents knowledge using resources and relationships between them, we
need to turn WSDL 2.0 concepts into this model. This is done as follows.

1. First, all components in WSDL 2.0 (like Interfaces, Operations, Bindings,
Services, Endpoints etc., including extensions) are turned into resources
identified with the appropriate URIs created according to Appendix C IRI-
References for WSDL 2.0 Components of [WSDL 2.0 Core].

2. Further, things are represented as resources:

a. Element declarations gathered from XML Schema (or similarly,
other components from other type systems)

b. Message content models

c. Message exchange patterns (the URI identifying the MEP is the
URI of the resource)

d. Operation styles (similarly to MEPs, the URI of an operation style is
the URI of the resource)

3. All the resources above are given the appropriate types using rdf:type
statements (an interface will belong to the class Interface and an operation
within an interface will belong to the class InterfaceOperation, for
example).

4. All relationships in WSDL 2.0 (like an Operation's belonging to an
Interface and having a given operation style) are turned into RDF
statements using appropriate properties, such as operation and
operationStyle.

5.6 Notes on URIs

5.6.1 XML Namespaces and Schema Locations

It is a common misperception to equate either the target namespace of an XML
Schema or the value of the xmlns attribute in XML instances with the location of
the corresponding schema. Even though namespaces are URIs, and URIs may
be locations, and it may be possible to retrieve a schema from such a location,
this does not mean that the retrieved schema is the only schema that is
associated with that namespace. There can be multiple schemas associated with
a particular namespace, and it is up to a processor of XML to determine which
one to use in a particular processing context. The WSDL 2.0 specification
provides the processing context here via the import mechanism, which is based
on XML Schema's term for the similar concept.

5.6.2 Relative URIs

Throughout this document there are fully qualified URIs used in WSDL 2.0 and
XSD examples. In some cases, fully qualified URIs were used simply to illustrate
the referencing concepts. However, the use of relative URIs is allowed and
warranted in many cases. For information on processing relative URIs, see
RFC3986.

5.6.3 Generating Temporary URIs

In general, when a WSDL 2.0 document is published for use by others, it should
only contain URIs that are globally unique. This is usually done by allocating
them under a domain name that is controlled by the issuer. For example, the
W3C allocates namespace URIs under its base domain name, w3.org.

However, it is sometimes desirable to make up a temporary URI for an entity, for
use during development, but not make the URI globally unique for all time and
have it "mean" that version of the entity (schema, WSDL 2.0 document, etc.).
Reserved Top Level DNS Names [IETF RFC 2606] specifies some URI base
names that are reserved for use for this type of behavior. For example, the base
URI "http://example.org/" can be used to construct a temporary URI without any
unique association to an entity. This means that two people or programs could
choose to simultaneously use the temporary URI "
http://example.org/userSchema" for two completely different schemas. As long as
the scope of use of these URIs does not intersect, then they would be unique
enough. However, it is not recommended that " http://example.org/" be used as a
base for stable, fixed entities.

6. References

6.1 Normative References

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
Author. Internet Engineering Task Force, March 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt

[IETF RFC 3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, Authors. Internet
Engineering Task Force, January 2001. Available at
http://www.ietf.org/rfc/rfc3023.txt

[IETF RFC 3986]
Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee, R.
Fielding, L. Masinter, Authors. Internet Engineering Task Force, January
2005. Available at http://www.ietf.org/rfc/rfc3986.txt

[IETF RFC 3987]
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3987.txt

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli,
C. M. Sperberg-McQueen, and E. Maler, Editors. World Wide Web
Consortium, 10 February 1998, revised 16 August 2006. This version of
the XML 1.0 Recommendation is http://www.w3.org/TR/2006/REC-xml-
20060816. The latest version of XML 1.0 is available at
http://www.w3.org/TR/xml.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors.
World Wide Web Consortium, 24 October 2001, revised 4 February 2004.
This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/. The latest
version of XML Information Set is available at http://www.w3.org/TR/xml-
infoset.

[XML Namespaces]
Namespaces in XML 1.0 (Second Edition), T. Bray, D. Hollander, A.
Layman, and R. Tobin, Editors. World Wide Web Consortium, 14 January
1999, revised 16 August 2006. This version of Namespaces in XML 1.0
Recommendation is http://www.w3.org/TR/2006/REC-xml-names-
20060816/. The latest version of Namespaces in XML is available at
http://www.w3.org/TR/xml-names.

[XML Schema Structures]
XML Schema Part 1: Structures Second Edition, H. Thompson, D. Beech,
M. Maloney, and N. Mendelsohn, Editors. World Wide Web Consortium, 2
May 2001, revised 28 October 2004. This version of the XML Schema
Part 1 Recommendation is http://www.w3.org/TR/2004/REC-xmlschema-
1-20041028. The latest version of XML Schema Part 1 is available at
http://www.w3.org/TR/xmlschema-1.

[XML Schema Datatypes]
XML Schema Part 2: Datatypes Second Edition, P. Byron and A.
Malhotra, Editors. World Wide Web Consortium, 2 May 2001, revised 28
October 2004. This version of the XML Schema Part 2 Recommendation
is http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest
version of XML Schema Part 2 is available at
http://www.w3.org/TR/xmlschema-2.

[WSDL 2.0 Core]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, R. Chinnici, J-J. Moreau, A. Ryman, S. Weerawarana, Editors.
World Wide Web Consortium, 26 June 2007. This version of the "Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language" Recommendation is available is available at
http://www.w3.org/TR/2007/REC-wsdl20-20070626. The latest version of
"Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language" is available at http://www.w3.org/TR/wsdl20.

[WSDL 2.0 Adjuncts]
Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts,
R. Chinnici, H. Haas, A. Lewis, J-J. Moreau, D. Orchard, S. Weerawarana,
Editors. World Wide Web Consortium, 26 June 2007. This version of the
"Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts" Recommendation is available at
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626. The latest
version of "Web Services Description Language (WSDL) Version 2.0 Part
2: Adjuncts" is available at http://www.w3.org/TR/wsdl20-adjuncts.

[WSDL 2.0 SOAP 1.1 Binding]
Web Services Description Language (WSDL) Version 2.0 SOAP 1.1
Binding, A. Vedamuthu, Editor. World Wide Web Consortium, 26 June
2007. This version of the "Web Services Description Language (WSDL)
Version 2.0 SOAP 1.1 Binding" Working Group Note is available at
http://www.w3.org/TR/2007/NOTE-wsdl20-soap11-binding-20070626. The
latest version of "Web Services Description Language (WSDL) Version 2.0
SOAP 1.1 Binding" is available at http://www.w3.org/TR/wsdl20-soap11-
binding.

[WSDL 2.0 RDF Mapping]
Web Services Description Language (WSDL) Version 2.0: RDF Mapping,
J. Kopecký, B. Parsia, Editors. World Wide Web Consortium, 26 June
2007. This version of the "Web Services Description Language (WSDL)
Version 2.0: RDF Mapping" Working Group Note is available at
http://www.w3.org/TR/2007/NOTE-wsdl20-rdf-20070626. The latest
version of "Web Services Description Language (WSDL) Version 2.0: RDF
Mapping" is available at http://www.w3.org/TR/wsdl20-rdf.

[Web Architecture]
Architecture of the World Wide Web, Volume One, Ian Jacobs, Norman
Walsh, Editors. W3C Recommendation, 15 December, 2004. Available at
http://www.w3.org/TR/2004/REC-webarch-20041215/ .

[WS Architecture]
Web Services Architecture, David Booth, et al., Editors. W3C Working
Group Note, 11 February 2004. Available at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ .

[WS Glossary]
Web Services Glossary, Hugo Haas, Allen Brown, Editors. W3C Working
Group Note, 11 February 2004. Available at
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/ .

[Describing Media Content of Binary Data in XML]
Describing Media Content of Binary Data in XML, Anish Karmarkar, Ümit
Yalçınalp, Editors. W3C Working Group Note 4 May 2005. Available at
http://www.w3.org/TR/xml-media-types/

6.2 Informative References

[IETF RFC 2606]
Reserved Top Level DNS Names, D. Eastlake, A. Panitz, Authors.
Network Working Group, Internet Engineering Task Force, June 1999.
Available at http://www.ietf.org/rfc/rfc2606.txt.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Authors. Internet
Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2818]

HTTP Over TLS, E. Rescorla, Author. Internet Engineering Task Force,
May 2000. Available at http://www.ietf.org/rfc/rfc2818.txt.

[SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1, D. Box, D. Ehnebuske, G.
Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, D.
Winer, Editors. World Wide Web Consortium, 8 May 2000. This version of
the Simple Object Access Protocol 1.1 Note is
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[SOAP 1.2 Part 1: Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), M.
Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielsen,
Editors. World Wide Web Consortium, 24 June 2003, revised 27 April
2007. This version of the "SOAP Version 1.2 Part 1: Messaging
Framework" Recommendation is http://www.w3.org/TR/2007/REC-
soap12-part1-20070427/. The latest version of "SOAP Version 1.2 Part 1:
Messaging Framework" is available at http://www.w3.org/TR/soap12-
part1/.

[SOAP 1.2 Part 2: Adjuncts]
SOAP Version 1.2 Part 2: Adjuncts, M. Gudgin, M. Hadley, N.
Mendelsohn, J-J. Moreau, and H. Frystyk Nielsen, Editors. World Wide
Web Consortium, 7 May 2003, revised 27 April 2007. This version of the
"SOAP Version 1.2 Part 2: Adjuncts" Recommendation is
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/. The latest
version of "SOAP Version 1.2 Part 2: Adjuncts" is available at
http://www.w3.org/TR/soap12-part2/.

[SOAP MTOM]
SOAP Message Transmission Optimization Mechanism , M. Gudgin, N.
Mendelsohn, M. Nottingham, H. Ruellan, Editors. World Wide Web
Consortium, 25 January, 2005. This version of SOAP Message
Transmission Optimization Mechanism is available at
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.

[WSD Requirements]
Web Services Description Requirements, J. Schlimmer, Editor. World
Wide Web Consortium, 17 October 2002. This version of the Web
Services Description Requirements document is
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028. The latest
version of Web Services Description Requirements is available at
http://www.w3.org/TR/ws-desc-reqs.

[WS-Addressing]
Web Services Addressing 1.0 - Core, Martin Gudgin, Marc Hadley, Editor.
World Wide Web Consortium, 17 August 2005. This version of the Web
Services Addressing 1.0 - Core document is available at
http://www.w3.org/TR/ws-addr-core/. The latest version of Web Services
Description Requirements is available at http://www.w3.org/TR/ws-addr-
core/.

[XPointer Framework]
XPointer Framework, Paul Grosso, Eve Maler, Jonathan Marsh, Norman
Walsh, Editors. World Wide Web Consortium, 25 March 2003. This
version of the XPointer Framework Proposed Recommendation is
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest
version of XPointer Framework is available at http://www.w3.org/TR/xptr-
framework/.

[W3C TAG Finding: Use of HTTP GET]
URIs, Addressability, and the use of HTTP GET and POST, Ian Jacobs,
Editor. World Wide Web Consortium, 21 March 2004. Available at
http://www.w3.org/2001/tag/doc/whenToUseGet

[W3C TAG Finding: Extending and Versioning Languages Part 1]
Extending and Versioning Languages Part 1 David Orchard, Editor. World
Wide Web Consortium, 26 March 2006. Available at
http://www.w3.org/2001/tag/doc/versioning

[WebArch: Extensible Languages]
Web Architecture: Extensible Languages , Tim Berners-Lee, Dan
Connolly, Authors. W3C Note 10 Feb 1998. Available at
http://www.w3.org/TR/NOTE-webarch-extlang

[XML Schema: Versioning Use-Cases]
XML Schema Versioning Use Cases , Hoylen Sue. W3C XML Schema
Working Group Draft, 31 January 2006. Available at
http://www.w3.org/XML/2005/xsd-versioning-use-cases/

[Guide to Versioning XML Languages using XML Schema 1.1]
Guide to Versioning XML Languages using XML Schema 1.1, David
Orchard. W3C XML Schema Working Group Draft, 28 September 2006.
Available at http://www.w3.org/TR/xmlschema-guide2versioning

[XML Schema 1.1]
XML Schema 1.1 Part 1: Structures, H. Thompson, C. M. Sperberg-
McQueen, Shudi (Sandy) Gao, N. Mendelsohn, David Beech, Murray
Maloney, Editors. World Wide Web Consortium, 31 August 2006. This
Working Draft of XML Schema 1.1 Part 1 is
http://www.w3.org/TR/2006/WD-xmlschema11-1-20060831/. The latest
version of XML Schema 1.1 Part 1 is available at
http://www.w3.org/TR/xmlschema11-1/.

[SW VocabManagementNote]
Vocabulary Management , Thomas Baker, et al. Semantic Web Best
Practices and Deployment Working Group Note, 8 Feb 2005. Available at
http://esw.w3.org/topic/VocabManagementNote

[RELAX NG]
RELAX NG Specification, James Clark, MURATA Makoto, Editors. OASIS
Committee Specification, 3 December 2001. Available at http://www.oasis-
open.org/committees/relax-ng/spec-20011203.html

[JAX RPC 1.1]

Java(TM) API for XML-based Remote Procedure Call (JAX-RPC)
Specification, version 1.1, Roberto Chinnici,et al. 14 October, 2003.
Available at http://java.sun.com/xml/downloads/jaxrpc.html

[REST]
Representational State Transfer (REST), Roy Thomas Fielding, Author.
2000. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[RDF]
Resource Description Framework (RDF): Concepts and Abstract Syntax,
Graham Klyne, Jeremy J. Carroll, Editors. W3C Recommendation, 10
February 2004. Available at http://www.w3.org/TR/rdf-concepts/

[OWL]
OWL Web Ontology Language Reference, Mike Dean,Guus Schreiber,
Editors. W3C Recommendation 10 February 2004 . Available at
http://www.w3.org/TR/owl-ref/

[Alternative Schema Languages Support]
Discussion of Alternative Schema Languages and Type System Support
in WSDL, A. Lewis, B. Parsia, Editors.

A. Acknowledgements (Non-Normative)

This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical
order): Charlton Barreto (Adobe Systems, Inc), Allen Brookes (Rogue Wave
Softwave), Dave Chappell (Sonic Software), Helen Chen (Agfa-Gevaert N. V.),
Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Maryland),
Glen Daniels (Sonic Software), Paul Downey (British Telecommunications),
Youenn Fablet (Canon), Ram Jeyaraman (Microsoft), Tom Jordahl (Adobe
Systems), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI
Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis
(TIBCO Software, Inc.), Philippe Le Hegaret (W3C), Michael Liddy (Education.au
Ltd.), Kevin Canyang Liu (SAP AG), Jonathan Marsh (WSO2), Monica Martin
(Sun Microsystems), Josephine Micallef (SAIC - Telcordia Technologies), Jeff
Mischkinsky (Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-
Jacques Moreau (Canon), David Orchard (BEA Systems, Inc.), Gilbert Pilz (BEA
Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman (IBM), Adi
Sakala (IONA Technologies), Michael Shepherd (Xerox), Asir Vedamuthu
(Microsoft Corporation), Sanjiva Weerawarana (WSO2), Ümit Yalçınalp (SAP
AG), Peter Zehler (Xerox).

Previous members were: Eran Chinthaka (WSO2), Mark Nottingham (BEA
Systems, Inc.), Hugo Haas (W3C), Vivek Pandey (Sun Microsystems), Bijan
Parsia (University of Maryland), Lily Liu (webMethods, Inc.), Don Wright
(Lexmark), Joyce Yang (Oracle Corporation), Daniel Schutzer (Citigroup), Dave
Solo (Citigroup), Stefano Pogliani (Sun Microsystems), William Stumbo (Xerox),
Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and

Technology), Tim Finin (University of Maryland), Laurent De Teneuille
(L'Echangeur), Johan Pauhlsson (L'Echangeur), Mark Jones (AT&T), Steve Lind
(AT&T), Sandra Swearingen (U.S. Department of Defense, U.S. Air Force),
Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO
Software, Inc.), Steve Graham (Global Grid Forum), Steve Tuecke (Global Grid
Forum), Michael Mahan (Nokia), Bryan Thompson (Hicks & Associates), Ingo
Melzer (DaimlerChrysler Research and Technology), Sandeep Kumar (Cisco
Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne
(Electronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA
Technologies), Mike McHugh (W. W. Grainger), Michael Mealling (Verisign),
Waqar Sadiq (Electronic Data Systems), Yaron Goland (BEA Systems, Inc.),
Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.), Jeffrey
Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik
Ackerman (Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods,
Inc.), William Vambenepe (Hewlett-Packard Company), David Booth (W3C),
Sanjiva Weerawarana (IBM), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin
(Computer Associates), Martin Gudgin (Microsoft Corporation), Rebecca
Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are
also gratefully acknowledged.

